

Sub-nanosecond timing system design and development for LHAASO project

Guanghua Gong, Qiang Du Dept. of Engineering Physics Tsinghua Univ. Beijing

13th International Conference on Accelerator And Large Experimental Physics Control System 10-14th October 2011, WTC Grenoble, France

Sub-nanosecond timing system

for LHAASO project

Guanghua Gong, Qiang Du Dept. of Engineering Physics Tsinghua Univ. Beijing

13th International Conference on Accelerator And Large Experimental Physics Control System 10-14th October 2011, WTC Grenoble, France

Outline

WEBHMULT04

astronomy

SILO DITE

Large High Altitude Air Shower Observatory

LHAASO_1

© 2009 Europa Technologies © 2009 Mapabc.com © 2009 Google Image © 2009 GeoEye Streaming ||||||||| 100%

.42" N 90°29'59.08" E elev 4296 m

Eye alt 6.46 km

Rarticle Array µ detector Array

Charge

6 km

Rarticle Array µ detector Array Water C Array

Charge

6 km

TH

Rarticle Array μ detector Array Water C Array Wide FOV C-Telescope Array **Gore Detector**

Charge

6 km

LHAASO detector

KM2A:

- > 5137 Electron detector, 15m spacing
- 1200 µ detector, 30m spacing
- WCDA: Water Cherenkov Detector Array
 - ▶ 150×150 m²
 - ➢ 3600 detector units
- WFCTA: *W*ide *F*OV *C*herenkov *T*elescope *A*rray
 - 24, 300m spacing
- SCDA: Shower Core Detector Array

Over 10,000 detector units Spread around 1Km2 area Reconstruct shower direction from *timing* of hits across detector

Synchronous timing among detectors

Timing requirement

Support 10,000 nodes

clock distribution

clock is used for Time-Digital-Converter High accuracy, low phase noise

time-stamp distribution

Trigger-less readout electronics, timestamp used for event alignment To guarantee pointing accuracy in reconstruction, Timestamp offset < 1ns

Automatic cable/fiber propagation correction

Timing requirement – cont.

High reliability, easy to maintain

manual intervention is difficult 24-7 running

Low power consumption

Heat sinking is problem Power from solar panel is limited

Environmental robustness

Wide temperature range High altitude, thin air

Low cost

Simple hierarchy, less items Share cable/fiber with data link path

```
WEBHMULT04
```

Evolution of Timing Distribution Method

 Method	Ability	Accuracy jitter	Medium	Layer	Complexity	Manageability
Radio Clock	Time	10ms	Wireless	Layer 1	Simple	No
NTP	Time	1ms	Wireless	Layer 3	Complex	No
CDMA	Time/Freq	10µs	Wireless	Layer 2	Complex	?
WCDMA	Time/Freq	3μs	Wireless	Layer 2	Complex	?
WiMAX/ LTE	Time/Freq	1µs	Wireless	Layer 2	Complex	?
GPS	Time/Freq	14ns	Sat – earth	Layer 1	Simple	No
PTPv2	Time	~ns	Ethernet	Layer 2	Complex	Yes
UTI J.211	Time/Freq	lns	Cable	Layer 1	Simple	Yes
SDH/SyncE	Freq	10ps	Ethernet	Layer 1	Simple	No
White Rabbit	Time/Freq	<1ns	Fiber GBE	Layer 1, 2	Complex	Yes
Optical carrier sync	Freq	<50fs	Fiber	Layer 1	Ultra complex	Yes
Optical Frequency Comb distribution	Time/Freq	<10fs	Fiber	Layer 1	Ultra complex	Yes

Evolution of Timing Distribution Method

							-	
	Method	Ability	Accuracy jitter	Medium	Layer	Complexity	Manageability	
	Radio Clock	Time	10ms	Wireless	Layer 1	Simple	No	
	NTP	Time	lms	Wireless	Layer 3	Complex	No	
	CDMA	Time/Freq	10µs	Wireless	Layer 2	Complex	?	
	WCDMA	Time/Freq	3μs	Wireless	Layer 2	Complex	?	
	WiMAX/ LTE	Time/Freq	1µs	Wireless	Layer 2	Complex	?	
	GPS	Time/Freq	14ns	Sat – earth	Layer 1	Simple	No	
	PTPv2	Time	~ns	Ethernet	Layer 2	Complex	Yes	
	UTI J.211	Time/Freq	1ns	Cable	Layer 1	Simple	Yes	
	SDH/SyncE	Freq	10ps	Ethernet	Layer 1	Simple	No	
	White Rabbit	Time/Freq	<1ns	Fiber GBE	Layer 1, 2	Complex	Yes	
	Optical carrier sync	Freq	<50fs	Fiber	Layer 1	Ultra complex	Yes	
	Optical Frequency Comb distribution	Time/Freq	<10fs	Fiber	Layer 1	Ultra complex	Yes	

White Rabbit

An extension to Ethernet which provides:

- Synchronous mode (Sync-E) common clock for physical layer in entire network, allowing for precise time and frequency transfer.
- Deterministic routing latency a guarantee that packet transmission delay between two stations will never exceed a certain boundary.

Possible application of Write Rabbit

WEBHMULT04

ICALEPCS 2011

Possible application of Write Rabbit

WEBHMULT04

ICALEPCS 2011

WR applicability for LHAASO

Test setup

ICALEPCS 2011

Test setup

WEBHMULT04

ICALEPCS 2011

Test result

Fiber Length Compensation

Fiber	PPS delay				
Length	Mean ¹	Sdev ²			
30cm	121.02ns	115.49ps			
1km	125.72ns	110.66ps			
5km	127.62ns	105.14ps			

Repeatability of Recovered PPS

#Run	30cm	1km	2km	3km	4km	5km
Run 1	16.05	15.89	15.82	15.78	15.67	15.57
Run 2	16.05	15.92	15.89	15.76	15.64	15.65
Run 3	16.02	15.93	15.86	15.72	15.67	15.65
Average	16.04	15.91	15.86	15.75	15.66	15.62
Peak-Peak	0.03	0.04	0.07	0.06	0.03	0.08
Link delay	473	10305	20145	29969	39801	49641

Note 1: the delay mainly comes from the length difference of the coaxial cables used for measurement. Note 2: the deviation mainly comes from the test signal drive circuit.

WEBHMULT04

Test result

Fiber Length Compensation

Fiber length automatically measured and compensated

Repeatability of Recovered PPS

#Run	30cm	1km	2km	3km	4km	5km
Run 1	16.05	15.89	15.82	15.78	15.67	15.57
Run 2	16.05	15.92	15.89	15.76	15.64	15.65
Run 3	16.02	15.93	15.86	15.72	15.67	15.65
Average	16.04	15.91	15.86	15.75	15.66	15.62
Peak-Peak	0.03	0.04	0.07	0.06	0.03	0.08
Link delay	473	10305	20145	29969	39801	49641

Note 1: the delay mainly comes from the length difference of the coaxial cables used for measurement. Note 2: the deviation mainly comes from the test signal drive circuit.

Test result

Fiber Length Compensation

Repeatability of Recovered PPS

The repeatability is less than 100ps

Note 1: the delay mainly comes from the length difference of the coaxial cables used for measurement. Note 2: the deviation mainly comes from the test signal drive circuit.

WEBHMULT04

ICALEPCS 2011

White Rabbit Topology in LHAASO

Global Time and clock reference from GPS and Rubidium oscillator Each nodes has a "Synchronization and Transmission Mezzanine"

WR network

~10,000 Ports

- WRS #ports count! 1300 for 8port, 650 for 16 port, 330 for 32port
- Network management required
- Boundary clock cross 4 layers
- Certain level of redundancy is needed

WEBHMULT04

ICALEPCS 2011

WR in CO-HT's hardware Kit

WR in Co-HT's Hardware Kit

BE-CO Hardware and Timing section CERN

November 11, 2010

Co-HT FMC-based Hardware Kit:

- FMCs (FPGA Mezzanine Cards) with ADCs, DACs, TDCs, fine delays, digital I/O
- Carrier boards in PCI-Express, VME and uTCA formats
- All carriers are equipped with a White Rabbit port

WEBHMULT04

An opposite situation

WEBHMULT04

ICALEPCS 2011

STM

- The STM has the similar functionality as SPEC No carriage, No PCIe, No PWR, no SATA
- Merge the SPEC into FMC form! Keep all connections compatible!
- Difficult but seems not impossible!

STM

- The STM has the similar functionality as SPEC No carriage, No PCIe, No PWR, no SATA
- Merge the SPEC into FMC form! Keep all connections compatible!
- Difficult but seems not impossible!

STM

- The STM has the similar functionality as SPEC No carriage, No PCIe, No PWR, no SATA
- Merge the SPEC into FMC form! Keep all connections compatible!
- Difficult but seems not impossible!

- LHAASO will be built in 5~6 years. 10000 detector units need to be precisely synchronized!
- Timing system based on Write Rabbit technology is proposed.
- A demonstration has been setup and tested

Thank you!

ICALEPCS 2011