

Large-bandwidth Data-acquisition Network for XFEL Facility, SACLA

T. Sugimoto, Y. Joti, T. Ohata, R. Tanaka,M. Yamaga (JASRI/SPring-8, Japan)T. Hatsui (RIKEN/SPring-8, Japan)

13th International Conference on Accelerator and Large Expereimental Physics Control Systems (ICALEPCS2011), WTC Grenoble, France, 12 October 2011.

Contents

- SACLA and its Scientific Applications
- Experimental Requirements
- SACLA DAQ Network
- Data Analysis Plan
- Summary

Overview of SACLA

(c) RIKEN/JASRI

Overview of SACLA

Scientific Application of the SACLA: (1) 3-D coherent diffraction imaging

Original algorithm for classification and determining orientation have been developed.

The developed algorithm enables to detect signal for classification in the noisy experimental data as low as 1/20 photons per an effective pixel.

Molecular length: 300Å Incident Intensity: 2.6x10²⁰ photons/pulse/mm² wavelength: 1Å Nessary number of 2D patterns : > 10^6

Experimental user want to take > 10^6 shots data.

K. J. Gaffney and H. N. Chapman, Science 316, 1444 (2007)

Scientific Application of the SACLA: (2) Protein nano-crystalography

Femtosecond nanocrystallography

HN Chapman et al. Nature 470, 73-77 (2011)

Diffraction pattern after annotation and averaging

0.8nm resolution structure of photosystem I

Experimental user want to take > $3x10^{6}$ shots data.

We provide large-bandwidth DAQ system using Ethernet.

To analyze such huge data, huge computing power is necessary. Thus, we also provide large-bandwidth network between storage and supercomputer.

Experimental Requirements

- A lot of images (typically ~10x10^6 shots) are necessary to reconstruct 3-D image.
- 2-D detector has ~ 2000x2000 pixels with 16 bit data per pixel.
 - We use 8+4 MPCCD (512x1024) sensors
 - Data rate of single MPCCD is 480Mbps with 60Hz cycle.
 → Total throughput is 5.8Gbps (with 12 sensors max. setup)
 - Single MPCCD sensor outputs 1 MBytes/frame.
 → 8 MBytes/shot (with 8 sensors min. setup)
- DAQ system requires
 - To guarantee the data rate at 5.8 Gbps
 - To store 80 TBytes data

The DAQ System requires...

- Bandwidth (> 5.8Gbps)
 - We prepared dedicated data-transfer 10GbE line.
 - We also prepared 1GbE low-latency instrumental-control line.
- Flexibility
 - << Experimental setup is changed within 1 week. >>
 - Experimental users want to perform experiments like a plug-inplay style at any experimental hutches.
 - Experimental users want to use several camera models.
- Access Control and Security
 - DAQ system can access the accelerator DBs.
 - Experimental users can control DAQ system.
 - Experimental users can access PC-Cluster system.

Bandwidth and Flexibility – Ethernet is a Good Solution

Bandwidth and Flexibility – Ethernet is a Good Solution

Data Analysis Plan – We Plan to Use Supercomputers

10Gbit Ethernet

On-site PC Cluster

High-speed Storage

80km away

10Gbit WAN or Dedicated Line

DCUS

e-Science

supercomputers

K computer

e-Science

Near Future Plan

 In early of 2012, we plan to evaluate data-transfer bandwidth and to perform test analysis using "FOCUS" and "e-Science" supercomputers at Kobe.

Summary

- We developed a large-bandwidth DAQ network (DAQ-LAN), and are developing another network for data analysis (PC-Cluster-LAN).
- The DAQ-LAN satisfied experimental requirements.
 - Bandwidth (> 5.8Gbps)
 - Flexibility (plug-in-play style, support several cameras)
 - Access Control and Security
- We plan to use off-site supercomputers to analyze huge image data.