### New Development of EPICS-based Data Acquisition System for Millimeter-wave Interferometer in KSTAR Tokamak

icalepcs 2011

# October 11, 2011, Taegu Lee



### Outlines



- KSTAR control system and diagnostic DAQ systems
- What is Millimeter-wave Interferometer ?
- First date acquisition system for the diagnostic
- Why need new DAQ system ?

#### Upgrade DAQ system

- What are the considerations in design ?
- Details about system hardware and software
- How to calculate the density in real-time ?

#### Operation Result in the 4<sup>th</sup> Campaign





### Features of KSTAR Control System

| Structure           | 2 Tier                 |                    | <ul> <li>Control Interlock+Safety</li> </ul>                                       |  |
|---------------------|------------------------|--------------------|------------------------------------------------------------------------------------|--|
| Structure           | 2 Layer                |                    | •Central Local                                                                     |  |
| Middleware          | EPICS                  |                    |                                                                                    |  |
| Operating<br>system | Linux                  |                    | <ul> <li>Plant monitoring &amp; control</li> </ul>                                 |  |
|                     | VxWorks                |                    | •Feedback control                                                                  |  |
| H/W<br>Platform     | Slow control           |                    | •PLC, cFP                                                                          |  |
|                     | Fast control           |                    | •VME, PXI, cPCI, PCI, VXI, (ATCA)                                                  |  |
|                     | <u>M</u> achine        | EPICS CA           | <ul><li>Plant monitoring &amp; control</li><li>Operational data transfer</li></ul> |  |
| Interface           | Experimental Data      | MDSip              | <ul> <li>Shot-based data storing</li> </ul>                                        |  |
| (Networks)          | Real-time              | Shared-memory      | •Real-time feedback control                                                        |  |
|                     | <u>I</u> nterlock      | (ControlNet)       | <ul> <li>Machine interlock &amp; protection</li> </ul>                             |  |
|                     | <u>T</u> iming         | Home-made protocol | <ul> <li>Timing &amp; synchronized operation</li> </ul>                            |  |
| OPI                 | Qt (open source)       |                    | •Home made libraries                                                               |  |
| Data<br>Managements | EPICS Channel Archiver |                    | •Low rate continuous operational data                                              |  |
|                     | MDSplus                |                    | •High rate shot-based experimental data                                            |  |

NFR 국가핵융합연구소 National Fusion Research Institute

3



### **Diagnostics in KSTAR**

#### • Data Acquisition Systems for Diagnostics

- Continuously increasing diagnostics campaign by campaign
- Almost 30 diagnostics operate in the 4<sup>th</sup> campaign

| DAQ<br>System | Diagnostic System               | СН | Description                                                                                                                                                                    |  |
|---------------|---------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MD            | Rogowski Coil                   |    | <ul> <li>1 cPCI crate with 2 independent backplane</li> </ul>                                                                                                                  |  |
|               | Flux/Voltage Loop               |    | •2 Linux servers with PCI expansion                                                                                                                                            |  |
|               | Magnetic Field Probe            |    | <ul> <li>Total 576 channels on 6 digitizers</li> <li>max 500KSPS (digitizer itself)</li> <li>Streaming data acquisition</li> <li>Full EPICS and MDSplus integration</li> </ul> |  |
|               | Diamagnetic Loop<br>Saddle Loop |    |                                                                                                                                                                                |  |
|               |                                 |    |                                                                                                                                                                                |  |
|               | Vessel Current Monitor          |    |                                                                                                                                                                                |  |
|               | Halo Current Monitor            |    |                                                                                                                                                                                |  |
|               | Probe system                    | 12 |                                                                                                                                                                                |  |
| MMWI          | MMW Interferometer              |    | •PXI, Linux host, max 500kHz                                                                                                                                                   |  |
| HALPHA        | H_Alpha Monitor                 |    | <ul><li>•1 VME crate with SBC</li><li>•2 digitizers(max 100KSPS)</li></ul>                                                                                                     |  |
| ECE_HR        | ECE Heterodyne Radiometer       |    | <ul><li>•1 VME crate with SBC</li><li>•3 digitizers (max 100KHz)</li></ul>                                                                                                     |  |
| TS            | Thomson scattering Diagnostic   |    | <ul> <li>Single Linux host and VME crate</li> <li>Current charging digitizer</li> </ul>                                                                                        |  |
| ER            | Edge Reflectometer              |    | PXI, max 200MHz                                                                                                                                                                |  |
| MC            | MC Mirnov Coil                  |    | <ul><li>•VXI, Linux host</li><li>•10 digitizers (1 ~ 800kHz)</li></ul>                                                                                                         |  |
| SXR           | Soft X-ray Array                | 64 | <ul> <li>•PXI, Linux host</li> <li>•8 digitizers (max 500KHz)</li> <li>•PSU control</li> <li>•Timing distribute board</li> </ul>                                               |  |

NFRI 국가핵융합연구소



### First DAQ System for MMWI

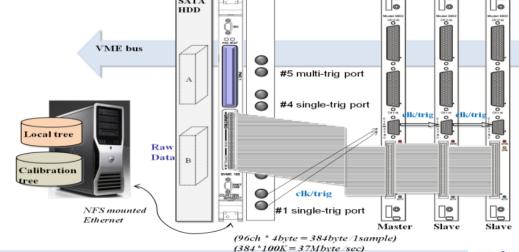
#### What is Interferometer?

- Interferometry is a widely used diagnostic tool for measuring electron density which is a primary plasma parameter
- In KSTAR,
  - ✓ A 280GHz single-channel horizontal MMWI is installed
  - ✓ It is suitable for low line-integrated electron density
  - ✓ Electron density ~ about 10<sup>19</sup>/m<sup>2</sup>

#### First DAQ system for MMWI

- The first DAQ system was developed for 3 difference diagnostics having similar channel characteristics for H/W utilization
  - ✓ MMWI, ECE Radiometer and H-Alpha monitor
- Features of DAQ System :
  - ✓ VME-form factor with 3 digitizers, totally 96 channels
  - ✓ CPU : SVME-183 (1.2GHz) (Curtis-wright)
  - ✓ Digitizer : Pentek M6802 (24-bit, 32CH, max 260kSPS)
  - ✓ O/S : Embedded Linux 2.6.20
  - ✓ Data stored in a local SATA disc thru FPDP
    - SATA HDD throughput : write (50.33MB/s)




### First DAQ System for MMWI

K§TAR

### Some Limitations of First DAQ system

- Limitation in storing data to local HDD
  - ✓ At 200KHz sampling, data rate = 200k\*96CH\*4Byte=74MB/s
  - $\checkmark\,$  At 100KHz sampling, it takes a long time for storing
- Inefficient data management
  - ✓ When one of three diagnostics obtains data at higher frequency, the others have to acquire unnecessary data
- Un-isolated fault propagation in operation
  - $\checkmark$  When a fault occurs in one diagnostic, it propagates to the others



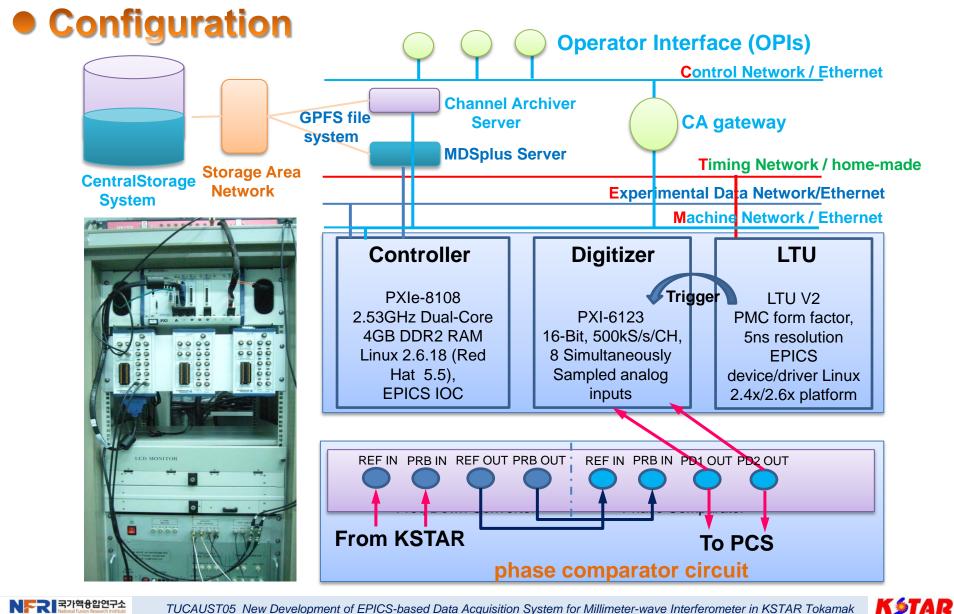


NFRI 국가핵융합연구소 National Fusion Research Institute

6

#### System Composition and Specification

- Considerations in design :
  - ✓ Does it support Linux OS? KSTAR standard OS is Linux
  - ✓ Is it stable for long-time operation without system reset?
  - Is it suitable for reducing development time and improving system reliability? Do we have experiences to develop?
  - ✓ Is the price reasonable?
- We chose PXIe form-factor
  - 1) Controller : PXIe-8108 (NI)
    - ✓ 2.53GHz dual-core PXIe embedded controller with 4GB DDR2 RAM
    - ✓ up to 1GB/s system bandwidth and 250MB/s slot bandwidth
  - 2) Digitizer : PXI-6123 (NI)
    - ✓ 8 simultaneously sampled analog inputs
    - $\checkmark$  16-bit resolution, 500kS/s per channel, from ±1.25 to ±10 V input range
  - 3) Time synchronization : LTU (Local Timing Unit)(Home-made)
    - ✓ Resolution and accuracy 5ns, output clock (1Hz ~ 100MHz)
    - ✓ Multi-triggering section : max. 8 (configurable)
    - $\checkmark$  2Gbps optical communication using a dedicated Timing Network

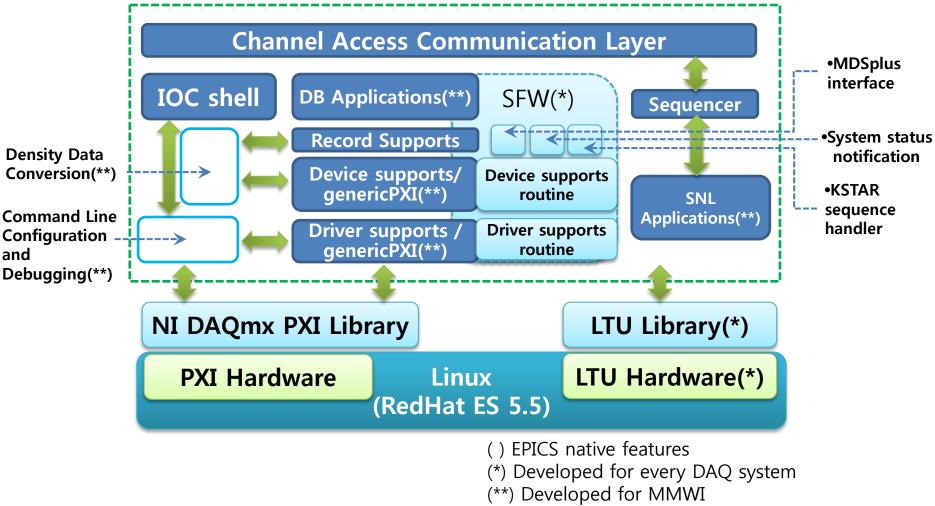

#### Development Environment

- OS : RedHat Linux 5.5 (kernel 2.6.18-194.e15)
- EPICS Base 3.14.12.
  - ✓ Control application, device/driver for PXI
- MDSplus (2.3-0) : Pulse-based archiving of experimental data
- **Qt** 4.3.2

8

- ✓ To develop operator interface panels
- ✓ Use in-house developed Qt libraries, KSTAR Widget Toolkit (KWT)
- NI-DAQmx (8.0.2) : Hardware driver for PXI
- **SFW** (Software Frame-Work) :
  - ✓ in-house developed standard template
  - $\checkmark\,$  To reduce developing time and improve system reliability
- sysMonLib : To monitor system health status
- LTULib : Hardware driver for in-house developed local timing unit (LTU)
  - ✓ To synchronize with KSTAR experimental cycle






N - 국가핵융합연구소

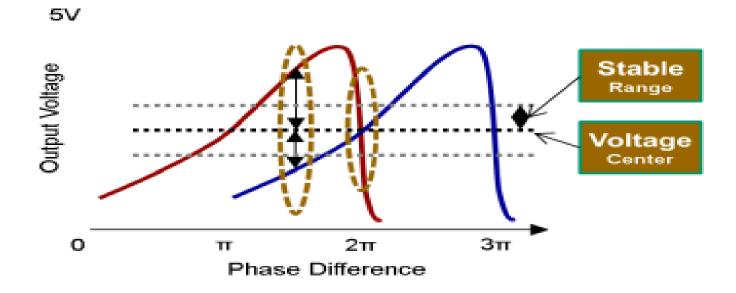
9

### Functional Block Diagram of IOC

#### **EPICS IOC Software**





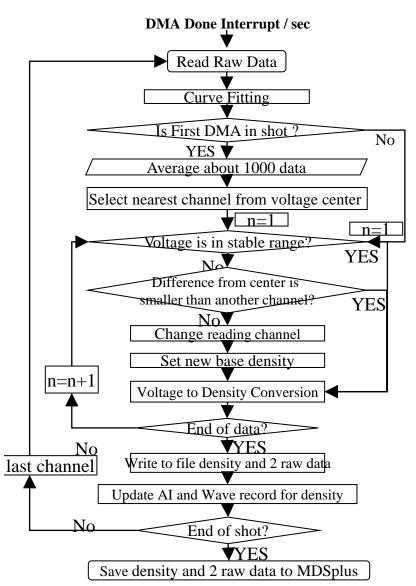

10

KSTAR

### How to Measure Plasma Density?

#### Features of Interferomenter Signals

- When millimeter-wave travels through plasma, its phase is changed in proportional to the plasma density
- A phase comparator measures the phase difference and outputs a voltage signal
- If the measured phase difference exceeds  $2\pi$ , the fringe jump occurs and the output voltage goes back to zero.

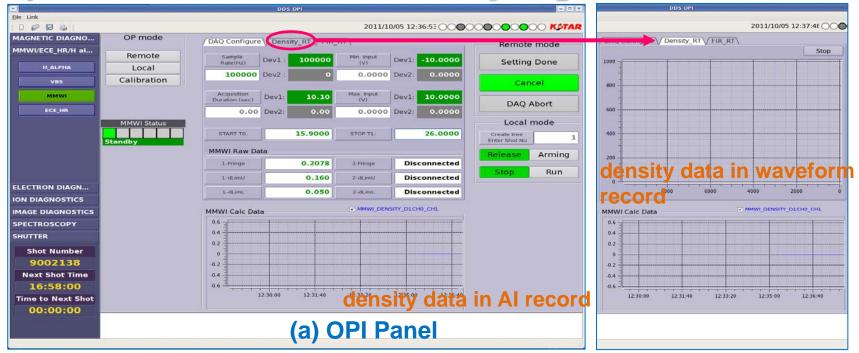


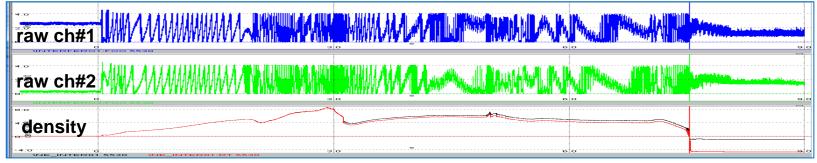

11

## <sup>12</sup>How to Calculate Density in Real-time?

#### Data Processing Sequence

- DMA done Interrupt / sec
- Fitting to compensate for a slight curvature of the phase comparator circuit
- Select nearest channel from voltage center
- Density conversion with the selected channel
- End of data process in buffer
- Write data to file : density and 2raw data
- Update AI/Waveform record with density data
- This sequence is repeated at every DMA interrupt
- 2 Raw & density data transmitted from local HDD to MDSplus DB in the central storage





KSTAR

NFR 국가핵융합연구소 National Fusion Research Institute

### **Operation result in the 4<sup>th</sup> campaign?**

#### Operation Panel and Density Signal





#### (b) Plasma density



13



### Operation Results in the 4<sup>th</sup> campaign?

#### • What are improved ?

- Increase data sampling frequency
- Improve system stability and reliability
  - ✓ system fault has occurred just one time
- Optimize data size
- Implement additional function
  - ✓ Displays density data on real-time
- Enhance density calculation procedure

| Campaign             | Fault  | Lost-shot | Total |
|----------------------|--------|-----------|-------|
| Campaign             | counts | counts    | shot  |
| 1 <sup>st</sup> 2008 | 23     | 23        | 1283  |
| 2 <sup>nd</sup> 2009 | 4      | 2         | 1059  |
| 3 <sup>rd</sup> 2010 | 14     | 17        | 2126  |
| 4 <sup>th</sup> 2011 | 1      | 2         | 2002  |

#### • What will be modified next?

- A small number of data points displayed in run-time during a shot
  - $\checkmark$  One density data at every 1sec, 10 points for a plasma pulse in 2011
  - $\checkmark\,$  It will be increased to 10 data at 1 sec





### Summary

- In the 4<sup>th</sup> operation of KSTAR in 2011, the newly developed MMWI DAQ system operated as an independent system.
- Add to the solving the problems of the previous system, the new DAQ system has a few advantages in the views of hardware and software
  - Improved performance in data acquisition by adopting the standardization
  - More accurate synchronized operation with a new timing board
  - ✓ Run-time calculation and displaying of density data
- Also, there was a progress in the efficient data management
- The MMWI DAQ system will be modified to meet requirements arising in operation such as;
  - Increasing the DMA event counts for the effective run-time displaying
  - Real-time data archiving to reduce the waiting time in MDSplus DB

