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Overview

The problem

Establish communication between commodity computers and
highly specialized hardware via EPICS, TANGO, etc.

FPGAs in Accelerators

FPGAs add high performance and flexibility to traditional
accelerator instrumentation.

How can specialized HW meet commodity computer world?

GbE keeping highly specialized hardware specialized.
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GbE in FPGAs: The Result of Two Success Stories

Field Programmable Gate Arrays

First commercially viable FPGA invented by the Xilinx
co-founders in 1985. First time a piece of hardware could have
programmable gates and programmable interconnects. Started
at 64 gates, to the millions of current technologies accounting

for a $2.75 billion market in 2010.

Ethernet

Developed at Xerox Park in 1973-74 to interconnect computers
locally inside the company. Standardized in 1980 as IEEE
802.3, and accounts for a $16.3 billion market in 2010 for

switches alone.
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FPGAs in Accelerators

Architecture designed on-demand

FPGA boards can be quite generic and still leave room for a
custom, application-optimized hardware design in the FPGA.
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FPGAs in Accelerators

Applications

Fast feedback, timing, high speed communications, data
acquisition, etc.

Why FPGAs?

Flexible, reliable, low latency, large throughput, deterministic.

Why not computers?

FPGAs perform much better for DSP, real-time, low latency
applications .
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Hardware Communication Standards

Many options

PCI, USB, CAN, VME, VXI, cPCI, PCIe, IEEE-488 (HP-IB),
IEEE-1392 (Firewire), SATA (or eSATA), etc.

Why Ethernet?

Simple enough for highly specialized hardware, well supported
by commodity computers, does not seem it will leave us any
time soon, and provides more bandwidth than computers can

handle anyway.
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Ethernet is simple

Why is it so successful?

The key is simplicity: Well thought out standard pushing
complexity to upper layers. It does what it has to do, it does it

well, and for cheap.
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What does Ethernet do?
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Implementation: 1GbE for Stratix-IV on Copper
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Client Example: UDP to Local Bus Gateway
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Local Bus Custom Frame Format

CTL ADDRESS DATA
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Local bus encoded 64−bit frame
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Conclusions

GbE and FPGAs mix well in nature

Both share simplicity and performance as high values.

Full bandwidth used

Real 1 GbE, where computer is the bottleneck.

Low FPGA resources used: Keep resources for applications!

Uses 930 logic cells, and 3 block RAMs on a Xilinx Spartan-6
XC6SLX45T (1.7% and 2.6% of the available resources).

Flexible, modularized solution

Several combinations of FPGA vendors and physical media
supported, with room for upper layer customization.
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Voilà..
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Support Slides (I): FERMI@ELETTRA LLRF board
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Support Slides (II): Familiar FPGA Block Diagram
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Support slides (III): Ethernet module block diagram
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Pseudo-Scalable Pseudo-Ethernet Pseudo-Switch

(Short-tick FPGA targeted, 2-16 clients, UDP payload, one to many and many to one switch)
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Support slides (IV): Client interface
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