Open Hardware

E. van der Bij, P. Alvarez Sanchez, M. Ayass, A.Boccardi, M. Cattin, C. Gil Soriano, E. Gousiou, S. Iglesias Gonsalvez, G. Penacoba, J. Serrano, N. Voumard, T. Wlostowski

CERN, Geneva, Switzerland

ICALEPCS 2011

- Overview of Controls Hardware
- Standards for New Designs
 - Bus standards
 - FPGA Mezzanine Card (FMC)
 - Wishbone
- **Open Hardware**
 - Open Hardware Intro
 - Open Hardware Repository
 - CERN Open Hardware Licence
- Case studies
 - Case study SPEC
 - Case study ADC
 - Experience with Industry
- Conclusions

- Overview of Controls Hardware
- - FPGA Mezzanine Card (FMC)
 - Wishbone
- - Open Hardware Intro
 - Open Hardware Repository
 - **CERN Open Hardware Licence**
- - Experience with Industry

Responsible for

Overview of Controls Hardware

 Controls infrastructure for all CERN accelerators, transfer lines and experimental areas

Open Hardware

- General services such as machine and beam synchronous timing and signal observation
- Specification, design, procurement, integration, installation, commissioning and operation

Supports

beam instrumentation, cryogenics, power converters etc.

Software

Linux device drivers, C/C++ libraries, test programs

Hardware kit

Overview of Controls Hardware

- analog and digital I/O
- level converters, repeaters
- serial links, timing modules

Currently, end 2011

- about 120 module types
- most are custom designed: only 1 in 4 is commercial
- 1 in 4 is obsolete

- Standards for New Designs
 - Bus standards
 - FPGA Mezzanine Card (FMC)
 - Wishbone
- - Open Hardware Intro
 - Open Hardware Repository
 - **CERN Open Hardware Licence**
- - Experience with Industry

Two bus standards

VME64x

Overview of Controls Hardware

6U, large front-panel space, may use rear transition module

Open Hardware

- PICMG 1.3
 - Industrial type PC with the processor on a plug-in board
 - Internal buses PCI Express and PCI

Need for a mezzanine approach

- Functions (e.g. ADC, TDC) are needed for both buses
- Would need twice as many designs, more if additional standards are needed (PXIe, xTCA)

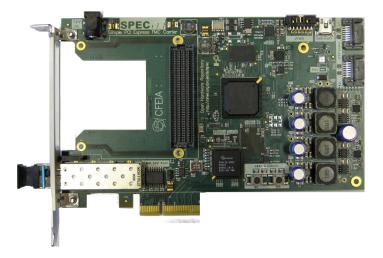
Re-use

Overview of Controls Hardware

- One mezzanine can be used in VME and PCIe carriers.
- People know standards, more likely to re-use or design for it.

Reactivity

- Carrier: place and route a complex FPGA/Memory PCB once.
- Mezzanine: small and easier to route cards, easy assembly.


Rational split of work

'Controls' can design the carrier, 'Instrumentation' an ADC mezzanine, 'RF' a DDS one, etc.

Example of an FMC mezzanine: 5-channel 1ns TDC

Example of a PCI Express FMC carrier (SPEC)

- System becomes pretty complex: System-on-a-chip
- Build up from re-usable IP blocks
- Connect blocks with Wishbone bus
 - open standard
 - simple address/data bus
 - extended with pipelined mode
 - many cores already available
- We developed a design infrastructure
 - scripts to interconnect Wishbone IP blocks
 - IP blocks with descriptors to aid driver development
 - support to compile designs with distributed sources
 - library of Wishbone IP blocks

Outline

- - FPGA Mezzanine Card (FMC)
 - Wishbone
- **Open Hardware**
 - Open Hardware Intro
 - Open Hardware Repository
 - CERN Open Hardware Licence
- - Experience with Industry

Get a design just the way we want it

We specify fully the design.

Peer review

Overview of Controls Hardware

Get your design reviewed by experts all around the world, including companies!

Design re-use

When it's Open, people are more likely to re-use it.

Healthier relationship with companies

No vendor-locked situations. Companies selected solely on the basis of technical excellence, good support and price.

A web-based collaborative tool for electronics designers

Wiki, News

Overview of Controls Hardware

- File repository
- Issues management
- Mailing list

Fully open access

All information readable by everyone, without registration

Server made itself of open software

- ChiliProject (a fork of Redmine)
- SVN/GIT for version management, integrated in OHR

MY PAGE PROJECTS

Logged in as erikvar » Si

FMC PROJECTS » SIMPLE PCIE FMC

CARRIER (SPEC)

OVERVIEW ACTIVITY MAILINGLIST NFW ISSUE **NFWS** DOCUMENTS WIKI FILES REPOSITORY SETTINGS

A simple 4-lane PCle carrier for FPGA Mezzanine Cards (VITA 57). It has memory and clocking resources and supports the White Rabbit timing and control network.

- · Detailed project information
- · Subprojects: Software support for the SPEC board
- · Status: Beta
- · Licence: CERN OHL

Overview of Controls Hardware

Projects

- 46 active projects
 - 38 initiated by CERN groups, 8 by other institutes
- 3.6 developers on average

Types of designs

- About 30 hardware designs (of which 20 FMC projects)
- About 20 re-usable IP blocks
- General tools
 - Production test environment (Python based)
 - ADC performance test

FMC Carriers

Overview of Controls Hardware

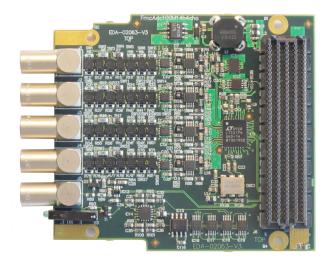
- VME64x (BE/BI), PCIe (BE/CO), AMC (PH/ESE), VXS (BE/RF)
- PXIe likely to come (EN/ICE)

FMC Mezzanines

- ADC's, sampling speeds: 100 kSPS, 100 MSPS
- TDC and Fine delay (resolution 1 ns)
- Digital I/O: 5 channels, 16 channels

Stimulates collaboration between CERN groups

- VME64x: BE-BI & BE-CO
- TDC: TE-ABT, TE-CRG & BE-CO


VME64x FMC carrier

FMC mezzanine: 100 MSPS 14-bit 4-channel ADC

Open Hardware

000000000000

Hardware

Overview of Controls Hardware

- TTL to NIM level converter (VME)
- White Rabbit timing network switch
- Small footprint ARM-based computer

IP modules, Software and Tools

- Wishbone cores: DDR3 controller, VME64 core, serialiser
- RISC Processor core
- Time-to-Digital Converter core
- NanoFIP WorldFIP interface
- Production test environment (Python based)

Provides a solid legal basis

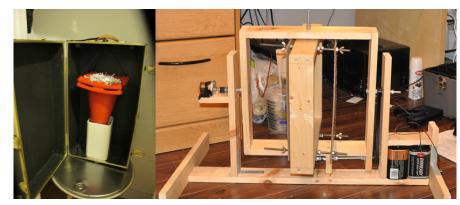
Overview of Controls Hardware

- Developed by Knowledge and Technology Transfer Group at CERN
- Open Software licences not usable (GNU, GPL, ...)
- Defines conditions of using and modifying licenced material

Practical: makes it easier to work with others

- Upfront clear that anything you give will be available to everyone
- Makes it clear that anyone can use it for free

Same principles as Open Software


- Anyone can see the source (design documentation)
- Anyone is free to study, modify and share
- Any modification and distribution under same licence
- Persistence makes everyone profit from improvements

Hardware production

Overview of Controls Hardware

When produce: licensee is invited to inform the licensor

Example of mechanics licenced with the CERN OHL

Worm farm and rotocaster

Outline

- - FPGA Mezzanine Card (FMC)
 - Wishbone
- - Open Hardware Intro
 - Open Hardware Repository
 - **CERN Open Hardware Licence**
- Case studies
 - Case study SPEC
 - Case study ADC
 - Experience with Industry

Case study – SPEC – Simple PCI Express Carrier

Open Hardware

We started with a complex design

- Our first FMC carrier design
- Wanted to have lots of timing things on it
- Wanted it to be very flexible: one design does it all

And got results

- We built a few prototypes
- Actually a bit overdesigned, too complex and expensive

Overview of Controls Hardware

PCIe FMC Carrier (PFC)

Overview of Controls Hardware

Too complex, so we wanted to have a simpler board

- Simple PCI Express Carrier (SPEC)
- Basically remove components from old design
- Optimise with new knowledge and re-layout

Industry got in

- We didn't have time to do the work
- Hired a small company (<15 persons)
- Review, review, review (specifications, schematics, pcb)
- CERN's design office generated final production files
- Used ohwr.org for all documentation

Case study – SPEC: Simple PCI Express FMC carrier

6-layer PCB instead of 12 on the PFC

Case study – SPEC

Make it a testable product

- Developed an FMC connector test card
- Developed a re-usable test environment (using Python)
- Developed go/no-go test suite

Redesign: V1, V1.1, V2, (V3,) V4

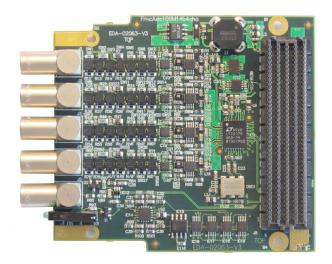
• 52 Issues registered and tracked in ohwr!

First series of 70 boards (production, guarantee)

- Solid specification, IPC norms for PCB fab and assembly
- Price Enquiry to 7 companies having already PCIe products. First delivery in December 2011.

Design

Overview of Controls Hardware


- Design by CERN student
- A small specialist company designed the front-end
- Review, review, review
- Design process well documented (mails, documents)
- 46 Issues documented
- 4 prototype versions, produce V5

CERN Price Enquiry for 40 boards (production, guarantee)

- Price Enquiry to five companies that produce ADC boards
- Useful design feedback (schematics and PCB layout) from company. Delivery in January 2012.

Open Hardware

Case study - 100 MSPS 14-bit 4-channel ADC

Potential users who contacted us

Overview of Controls Hardware

- BPM Linac4 (CERN BE/BI)
- Frame grabber for BSRT emittance meter (CERN BE/BI)

Open Hardware

- PSB pick-ups (CERN BE/BI)
- Septum. Booster Trajectory Measurement (CERN TE/ABT)
- OASIS general purpose (CERN BE/CO)
- Italian Hadron Therapy Centre, BPM system (CNAO)
- Agata experiment (INFN, PH/UCM)
- Culham Centre for Fusion Energy (CCFE)
- Advanced Photon Source (Argonne National Laboratory)
- Radio Telescope (Oregan State University)

Experience with Industry

Product Design

Overview of Controls Hardware

- Needs additional effort to make CERN designs a Product
- Particular effort in reducing Bill of Material
- Automated test bench
- Precise production documentation

Industry and the OH concept

- Open Hardware is new and not always understood
- Need to explain companies the opportunities and risks
- Companies think they compete with assembly companies. We ask only companies that can also support (guarantee, repair, improve)
- Needs time from us and guts from companies

Companies used (usually paid for)

- 12 European companies, 1 US company
- 11 projects

Types of work

- Hardware: development, production
- Software: VHDL firmware, drivers
- Usually small projects (<2 months work), speeds up projects, gets in specialist knowledge
- Small companies can play a large role

Examples of re-use of work

- Two companies will modify SPEC carrier design
 - larger FPGA (for software radio DSP)
 - PXIe bus instead of PCIe; possibly PXI too (for CERN EN)

Open Hardware

- A company re-uses White Rabbit spec for own product
- A company may use nanoFIP for renovating trains

Generates interaction

- One company will help another with product development
- Companies will work together building an ecosystem
 - One sells a carrier, others sell mezzanines
 - One sells a WR switch, others sell WR nodes

Outline

- - FPGA Mezzanine Card (FMC)
 - Wishbone
- - Open Hardware Intro
 - Open Hardware Repository
 - **CERN Open Hardware Licence**
- - Experience with Industry
- Conclusions

Get a design just the way we want it – Yes

With own designers and with outside help (industry, institutes).

Peer review – Yes

Overview of Controls Hardware

From different groups. Also by industry.

Design re-use - Yes

- SPEC and ADC100M have users and lots of interest.
- SPEC design is being copied and re-used in other designs.

Healthier relationship with companies – Yes

- Are much more free to use small companies.
- Not tied to any single company.

- The electronics that we support cannot be black boxes.
- Open Hardware has many advantages.
 - Anyone can help in developments and make improvements.

Open Hardware

- Allows to work differently with industry (design work, smaller companies).
- Not tied to a single company for production and support.
- CERN Open Hardware Licence provides a legal basis.
- Using standards (VME64x, PCIe, FMC, Wishbone) attracts users and improves re-usability.
- OHR site is practical for engineers and is stimulating.
- OHR site contains many re-usable IP modules.
- Many designs being developed and several are already produced by industry.
- Almost three years of experience show it works!