

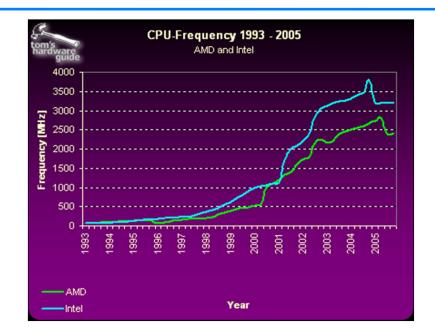
Wir schaffen Wissen – heute für morgen

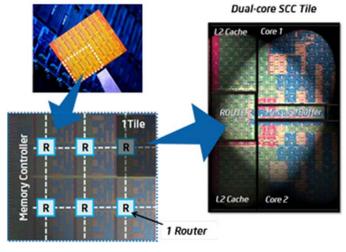
Paul Scherrer Institut Timo Korhonen

Modern system architectures in embedded systems

•Outline

- What is driving the technology?
- Two most prominent trends
- How can we take advantage of this?
 - Applications in embedded systems
 - Some being worked on, some imagined
- Conclusions

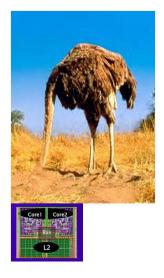



- Technology drivers
 - The general IT and telecommunication industry always have their needs for
 - More computing power
 - Most efficient use of the infrastructure
 - Many (but not all) of the technology push comes from there
 - This becomes the technology base for us

- •Trend 1: drive towards parallel processing
 - CPU frequencies are not rising any more
 - Speed through parallelization
 - There are a number of variations to this.
 - The most obvious: adding CPU cores

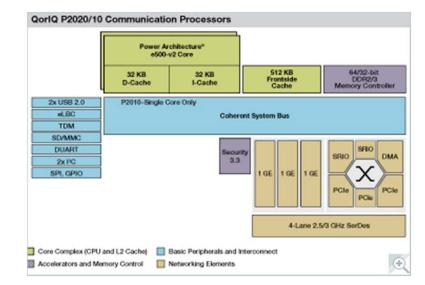
Parallel processing has been around for quite some time, but now we too have to care about it!

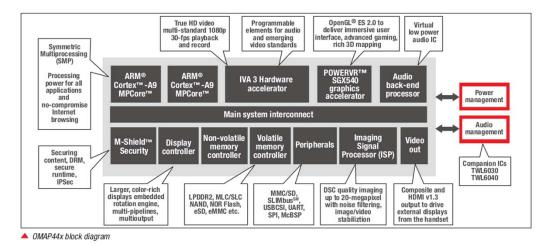
Intel 48-core CPU



- •The ultimate in parallel processing:
 - Many talks in this conference have shown the use of FPGAs as computing engines
 - Mathematical operations, DSP, image processing, data reduction to name a few
 - Real applications, not just glue logic
 - Ultimate parallelism to really fine-grained level
 - A few drawbacks, however:
 - Development cycle long
 - Abstraction level of tools is still low
 - Toolsets at vendor's mercy
 - A full open source toolchain would be great (although not too likely to happen)

•Parallelism on a coarser level


- Multi-core CPUs
- This is datacenter technology but is everywhere
 - Unavoidable, even if one wanted to...
- Better to study and take advantage of it
- Has its advantages:
 - Lightweight (relatively)
 - Faster development cycle
 - Mainstream OS support
- But is not without a catch:
 - · Real-time systems have to be looked at closely
 - Timing behaviour, deadlocks,...
 - Very little attention so far
 - » Some contributions in this conference



•Multi-core variants

- Homogenous
 - Many identical processors
- Heterogenous
 - Diverse cores (DSP, GPU)
 - Can be very interesting for embedded applications
- Task partitioning important
 - OS & library support

Freescale QorIQ

TI OMAP

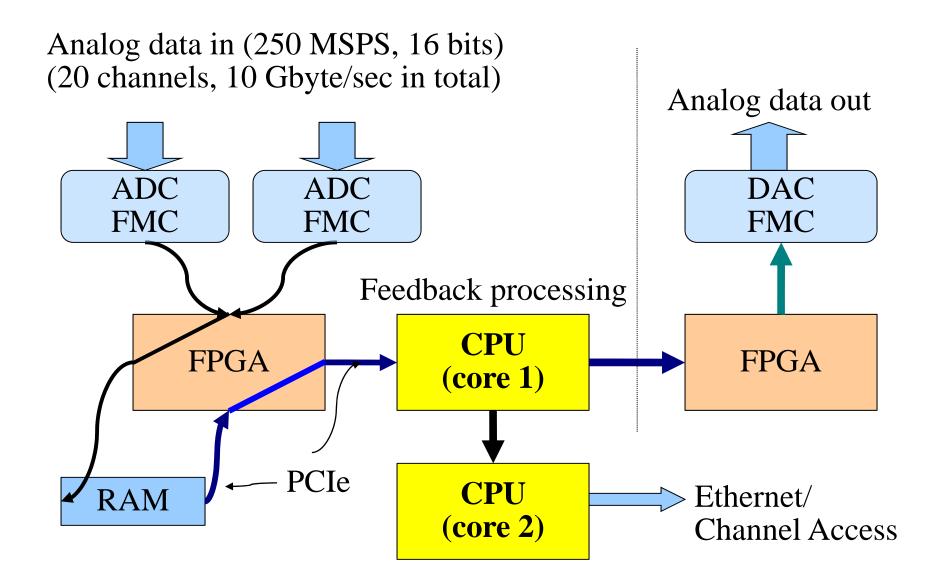
- •Interconnects (fast serial links)
 - Needed (also) for efficient parallelism
 - Multi-drop bus scales badly with multicore
 - Point-to-point, data plane
 - Also message passing
 - Serial links are everywhere
 - Ethernet & PCI express are the dominant protocols
 - Custom protocols sometimes needed but are a challenge for integration
 - Mastering these technologies is essential
 - Needed to take advantage of parallelism
 - Makes the whole scene interesting

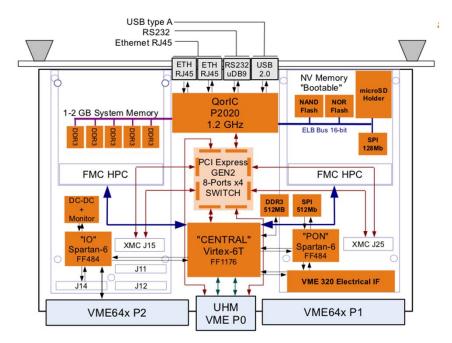
•Trend 2: Virtualization

- another datacenter trend
- Efficient use of hardware
 - Reduce number of idling CPUs
- Even more pressing needs:
 - Maintenance
 - Fewer servers to look after
 - Management
 - Start, stop, move servers around (high availability)
 - Cooling, etc. infrastructure
 - This all applies to embedded systems, too!
 - Or, at least could apply

•Support for parallelism has not been the main driver for virtualization but it is needed to take advantage of multicore parallelism

- Symmetric multiprocessing does not scale well to very large number of cores
- Could open up interesting possibilities (examples later)
- Speciality: I/O Virtualization
 - Hardware implementation of hypervisor function
 - Guest OS gets direct access to hardware
 - Removes bottlenecks due to software intervention
 - Part of general trend to move virtualization support to hardware


- •Three selected applications
 - To illustrate how these things may affect us
 - Real and imaginary
 - None of these is in real use yet some of them may never be

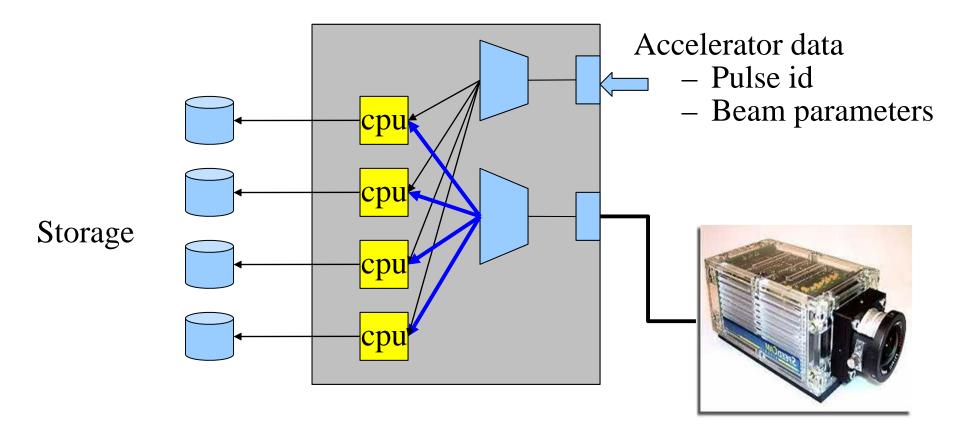

•Applications (1)

- Data streaming and processing in a fast (local) feedback system (LLRF)
 - demonstrates
 - Parallelization
 - Use of fast interconnects
 - Use of multi-core separate functions
- We (Controls & Low-level RF groups at PSI) are actually working on this
 - First prototypes expected early next year

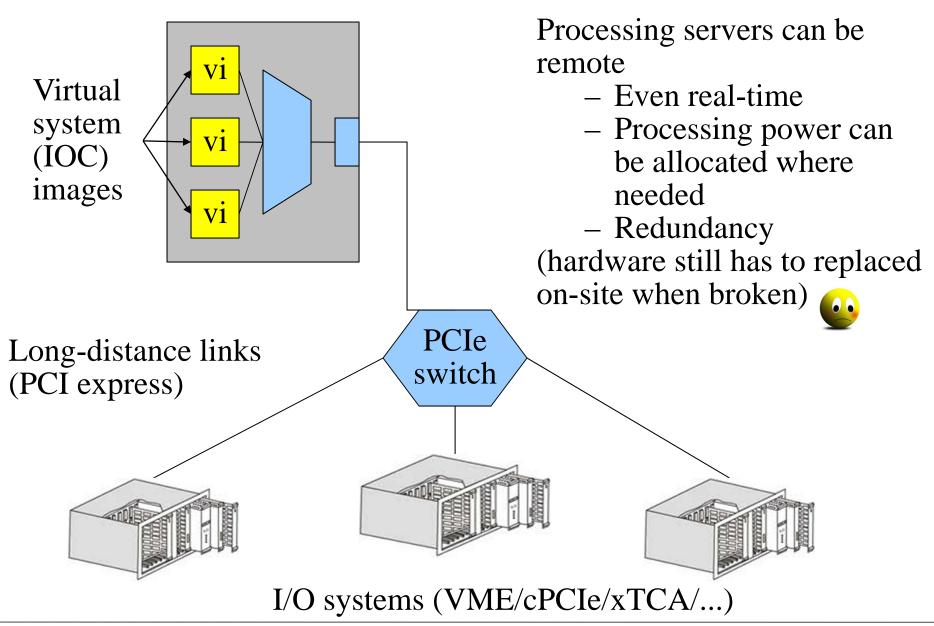
This is real... our new platform: IFC_1210

IOxOS SA & PSI co-development

- Plugs in a normal VME64x crate
- PCI express (two 4x lanes) & GTX serial links through P0
- Dual FMC (XMC,PMC) carrier
- Details see www.ioxos.ch


•Applications

- Striping data acquisition
- Fast (imaging) detector and (image) processing
 - Parallelism with multiple cores
 - Serial interconnects
 - Use of I/O virtualization for load sharing
 - » Improves efficiency
 - (imaginary- we might do this but are not doing at the moment)


Multicore server processing large volume data

- Too fast for a single core
- Data striped, processed and stored to disk
- Merge with e.g. pulse number (X-ray FEL)

- •Applications: centralize I/O processing
 - Virtualization of front-end I/O
 - Maintainability
 - System updates
 - CPU power allocation
 - Totally changes the landscape...
 - Frontend equipment can be made thin
 - Cooling, power, monitoring
 - No CPU mandatory
 - Imagination is the limit...

•Conclusions

- Trends hit us, if we want it or not
 - Mastering the technologies is important
 - parallelism
 - Interconnect protocol is the key to integration
- These trends can (and will) change how we do things
 - Thats what keeps us busy... and why this is a great field to be in!

Thank you for your attention!

