

 Wesley W. Terpstra

 GSI Helmholtz Centre for Heavy Ion Research GmbH
Darmstadt, Germany http://bel.gsi.de

The Case for Soft-CPUs in The Case for Soft-CPUs in
Accelerator Control SystemsAccelerator Control Systems

What is a Soft-CPU?What is a Soft-CPU?

➔ A full CPU
➔ Implemented in HDL
➔ Connected to the FPGA internalSoC bus

Why use a Soft-CPU? Why use a Soft-CPU? (vs. custom HDL)(vs. custom HDL)

✔ Re-use large body of C/fortran/etc codeRe-use large body of C/fortran/etc code
✔ Complex execution orderComplex execution order
✔ Dynamic resource managementDynamic resource management
✔ A single component to solve many tasks
✔ Easier to debug and trace

✗ Slower
✗ Requires a memory subsystem

Why use a Soft-CPU? Why use a Soft-CPU? (vs. external CPU)(vs. external CPU)

● Physically separate chip
● ARM/etc integrated into FPGA

Why use a Soft-CPU? Why use a Soft-CPU? (vs. External CPU)(vs. External CPU)

✗ Speed
✗ Standard OS and toolchain

✔ Customizable instructions
✔ One less part

✔ Runs synchronously with FPGA bus clock
● Deterministic timing behaviour
● Tight integration with custom HDL

Size? ... Memory!Size? ... Memory!

● (Good) Soft-CPUs take ~2% of EP2AGX125
● A single Soft-CPU can run multiple programs

 What's the cost of a Soft-CPU?

The Memory Subsytem

 Trades FPGA gates for memory blocks

 The more it does, the more it needs

The true cost of more memoryThe true cost of more memory

● More memory = further away from CPU
● Further away = more complicated timing

(bus access cycles, prefetch, cache miss)
● MMU makes it even worse (TLB misses)

➔ Might as well use an external CPU

Soft-CPU non-issuesSoft-CPU non-issues

● Most (good) Soft-CPUs have similar perfomance
● Single cycle issue and ~175MHz (Arria2)
● 3-staged fetch/decode/execute

● Comparable area (at most 3* different)
● Similar executable sizes (32-bit RISC)

Soft-CPUs, but Hard RequirementsSoft-CPUs, but Hard Requirements

– Open Source
• Portable (Altera, Xilinx, Lattice, ... future proof)
• Tweakable (custom instructons, bus choice, ...)

– Well documented, tested, and supported
• Eliminates almost all open source softcores

– Survivors: LM32, LEON3, OpenRISC, (ZPU)

Feature ComparisonFeature Comparison

Requirement Purpose Issues

Gcc-toolchain re-use of C -

JTAG access debug bus, load F/W ZPU

Debug support trace program ZPU

Flex. mem bus max determinism OR1k

Documentation ZPU

Best choices: LM32 and LEON3

Size/speed trade-offs (Ballpark)Size/speed trade-offs (Ballpark)

CPU Mhz Size (LEs) Cycles/mul

ZPU 300 175 400 576+

LM32 250 175 900 1

LEON3 175 2500 1

OpenRISC 150 3700 1

(All numbers are for an Altera Arria2)

... and the winner is!... and the winner is!

 If you need an MMU / linux

LEON3 (or an external CPU)

 If you need deterministic execution

 If you need a configurable memory bus

 If you need small and fast

LM32 !

Questions?Questions?

LM32 Processor OverviewLM32 Processor Overview

● 32-bit RISC architecture
● 32 registers
● 8-16 control registers
● no side-effects / flags

● 6-stage pipeline
● single cycle issue
● 1-3 cycle result

● Harvard architecture

What's bad about NIOS/Microblaze?What's bad about NIOS/Microblaze?

● Not Open-Source
● Vendor-specific (Altera/Xilinx)
● Cannot be debugged / signal trapped
● Cannot be tweaked or fixed

● On the other hand:
● more comprehensive feature set
● more complete instruction set
● vendor specific HDL = slightly smaller

What's bad about ARM/MIPS?What's bad about ARM/MIPS?

● Patented instruction set
● Even if you make your own Soft-CPU... bad!

● (If not Open Source):
● Cannot be debugged / signal trapped
● Cannot be tweaked or fixed

● On the other hand:
● more comprehensive feature set
● more complete instruction set

LM32 Processor OptionsLM32 Processor Options

Feature Size Impact Suggestion
● Instruction cache ++ ++++ KEEP
● Data cache +++ + -
● Multiplier . + KEEP
● Barrel shifter . + KEEP
● Divider +++ + -
● JTAG access ++ DEBUG
● Watch/breakpoints + DEBUG
● 32 Interrupts + ++ KEEP

	
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

