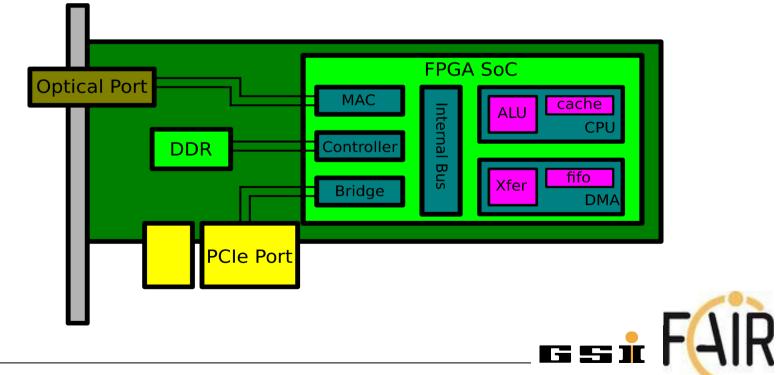


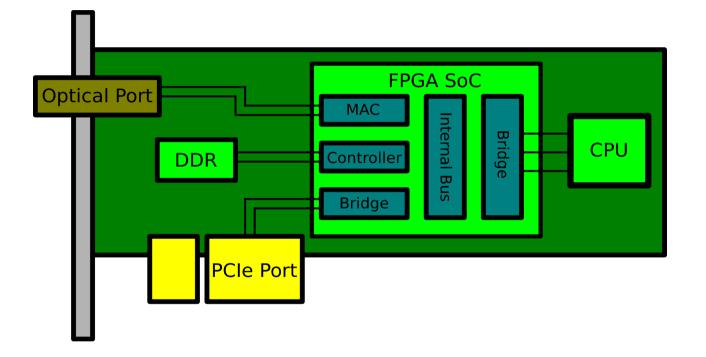
The Case for Soft-CPUs in Accelerator Control Systems


Wesley W. Terpstra

GSI Helmholtz Centre for Heavy Ion Research GmbH Darmstadt, Germany *http://bel.gsi.de*

What is a Soft-CPU?

- → A full CPU
- Implemented in HDL
- Connected to the FPGA internalSoC bus



Why use a Soft-CPU? (vs. custom HDL)

- Re-use large body of C/fortran/etc code
- Complex execution order
- Dynamic resource management
- ✓ A single component to solve many tasks
- Easier to debug and trace
- × Slower
- **X** Requires a memory subsystem

Why use a Soft-CPU? (vs. external CPU)

- Physically separate chip
- ARM/etc integrated into FPGA

Why use a Soft-CPU? (vs. External CPU)

- × Speed
- × Standard OS and toolchain
- Customizable instructionsOne less part

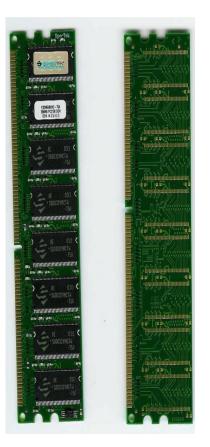
Runs synchronously with FPGA bus clock

- Deterministic timing behaviour
- Tight integration with custom HDL

GSI

Size? ... Memory!

- (Good) Soft-CPUs take ~2% of EP2AGX125
- A single Soft-CPU can run multiple programs


What's the cost of a Soft-CPU? *The Memory Subsytem*

Trades FPGA gates for memory blocks The more it does, the more it needs

GSİ

The true cost of more memory

- More memory = further away from CPU
- Further away = more complicated timing (bus access cycles, prefetch, cache miss)
- MMU makes it even worse (TLB misses)
- → Might as well use an external CPU

GSÏ

Soft-CPU non-issues

- Most (good) Soft-CPUs have similar perfomance
 - Single cycle issue and ~175MHz (Arria2)
 - 3-staged fetch/decode/execute
- Comparable area (at most 3* different)
- Similar executable sizes (32-bit RISC)

Soft-CPUs, but Hard Requirements

- Open Source
 - Portable (Altera, Xilinx, Lattice, ... future proof)
 - Tweakable (custom instructons, bus choice, ...)
- Well documented, tested, and supported
 - Eliminates almost all open source softcores
- Survivors: LM32, LEON3, OpenRISC, (ZPU)

Feature Comparison

<u>Purpose</u>	<u>Issues</u>
re-use of C	-
debug bus, load F/W	ZPU
trace program	ZPU
max determinism	OR1k
	ZPU
	re-use of C debug bus, load F/W trace program

Best choices: LM32 and LEON3

Size/speed trade-offs (Ballpark)

<u>CPU</u>	<u>Mhz</u>	<u>Size (LEs)</u>	<u>Cycles/mul</u>
ZPU	300 175	400	576+
LM32	250 175	900	1
LEON3	175	2500	1
OpenRISC	150	3700	1

(All numbers are for an Altera Arria2)

... and the winner is!

If you need an MMU / linux LEON3 (or an external CPU)

If you need deterministic execution If you need a configurable memory bus If you need small and fast LM32 !

Questions?

LM32 Processor Overview

- 32-bit RISC architecture
 - 32 registers
 - 8-16 control registers
 - no side-effects / flags
- 6-stage pipeline
 - single cycle issue
 - 1-3 cycle result
- Harvard architecture

What's bad about NIOS/Microblaze?

- Not Open-Source
 - Vendor-specific (Altera/Xilinx)
 - Cannot be debugged / signal trapped
 - Cannot be tweaked or fixed
- On the other hand:
 - more comprehensive feature set
 - more complete instruction set
 - vendor specific HDL = slightly smaller

What's bad about ARM/MIPS?

- Patented instruction set
 - Even if you make your own Soft-CPU... bad!
- (If not Open Source):
 - Cannot be debugged / signal trapped
 - Cannot be tweaked or fixed
- On the other hand:
 - more comprehensive feature set
 - more complete instruction set

LM32 Processor Options

Feature	Size	<u>Impact</u>	<u>Suggestion</u>
 Instruction cache 	++	++++	KEEP
 Data cache 	+++	+	-
 Multiplier 		+	KEEP
 Barrel shifter 	•	+	KEEP
 Divider 	+++	+	-
 JTAG access 	++		DEBUG
 Watch/breakpoints 	+		DEBUG
• 32 Interrupts	+	++	
-			it HAIK