
The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Free and Open Source Software at CERN:
Integration of Drivers in The Linux Kernel

Juan David González Cobas, Samuel Iglesias Gonsálvez,
Julian Howard Lewis, Javier Serrano, Manohar Vanga

(CERN, Geneva),
Emilio G. Cota (Columbia University, NY; formerly at CERN),

Alessandro Rubini, Federico Vaga (University of Pavia)

ICALEPCS’2011

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

CERN Controls System Front End Computers (FECs)

The controls system relies on FECs on several form
factors/buses, most of them based on Single-Board Computers
(SBCs)

Number of FECs: 1140
Number of VME crates: 710

For the VME crates, the ongoing renovation process gives
CES RIO2/RIO3 SBCs with PowerPC CPUs running
LynxOS (around 605 crates by August 2011), to
MEN-A20 SBCs with Intel CPUs running real-time Linux
(around 105 by August 2011).

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

MEN A20 and the TSI148 chip and driver

The MEN A20 SBC is an Intel Core 2 Duo-based board
interfacing to the VME bus via a Tundra TSI148 PCI-X to VME
bridge chip.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A driver for the tsi148

Some data about our driver for the tsi148 PCI-X to VME
bridge.

Developed at CERN in spring 2009 (Sébastien Dugué)
Maintained and extended by Emilio G. Cota during 2010
Currently maintained by Manohar Vanga (see below)
API via exported symbols (kernel) and old-style ioctl()

(user) interface.
Backward compatible at the API level with the original
LynxOS CES library (well, almost) and offering a newer
API as well

Beginning as an in-house and CERN-centric development

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A driver for the tsi148

Some data about our driver for the tsi148 PCI-X to VME
bridge.

Developed at CERN in spring 2009 (Sébastien Dugué)

Maintained and extended by Emilio G. Cota during 2010
Currently maintained by Manohar Vanga (see below)
API via exported symbols (kernel) and old-style ioctl()

(user) interface.
Backward compatible at the API level with the original
LynxOS CES library (well, almost) and offering a newer
API as well

Beginning as an in-house and CERN-centric development

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A driver for the tsi148

Some data about our driver for the tsi148 PCI-X to VME
bridge.

Developed at CERN in spring 2009 (Sébastien Dugué)
Maintained and extended by Emilio G. Cota during 2010

Currently maintained by Manohar Vanga (see below)
API via exported symbols (kernel) and old-style ioctl()

(user) interface.
Backward compatible at the API level with the original
LynxOS CES library (well, almost) and offering a newer
API as well

Beginning as an in-house and CERN-centric development

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A driver for the tsi148

Some data about our driver for the tsi148 PCI-X to VME
bridge.

Developed at CERN in spring 2009 (Sébastien Dugué)
Maintained and extended by Emilio G. Cota during 2010
Currently maintained by Manohar Vanga (see below)

API via exported symbols (kernel) and old-style ioctl()

(user) interface.
Backward compatible at the API level with the original
LynxOS CES library (well, almost) and offering a newer
API as well

Beginning as an in-house and CERN-centric development

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A driver for the tsi148

Some data about our driver for the tsi148 PCI-X to VME
bridge.

Developed at CERN in spring 2009 (Sébastien Dugué)
Maintained and extended by Emilio G. Cota during 2010
Currently maintained by Manohar Vanga (see below)
API via exported symbols (kernel) and old-style ioctl()

(user) interface.

Backward compatible at the API level with the original
LynxOS CES library (well, almost) and offering a newer
API as well

Beginning as an in-house and CERN-centric development

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A driver for the tsi148

Some data about our driver for the tsi148 PCI-X to VME
bridge.

Developed at CERN in spring 2009 (Sébastien Dugué)
Maintained and extended by Emilio G. Cota during 2010
Currently maintained by Manohar Vanga (see below)
API via exported symbols (kernel) and old-style ioctl()

(user) interface.
Backward compatible at the API level with the original
LynxOS CES library (well, almost) and offering a newer
API as well

Beginning as an in-house and CERN-centric development

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A driver for the tsi148

Some data about our driver for the tsi148 PCI-X to VME
bridge.

Developed at CERN in spring 2009 (Sébastien Dugué)
Maintained and extended by Emilio G. Cota during 2010
Currently maintained by Manohar Vanga (see below)
API via exported symbols (kernel) and old-style ioctl()

(user) interface.
Backward compatible at the API level with the original
LynxOS CES library (well, almost) and offering a newer
API as well

Beginning as an in-house and CERN-centric development

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Why going upstream? (2010)

By mid-2010, the decision is taken to submit the driver for
acceptance in the Linux kernel main tree. Motivation:

Smoother maintenance in the (frequent) case of
kernel API changes
(see Documentation/stable api nonsense.txt in the
kernel tree).
Widespread distribution of the code base, which can then
be enhanced and get contributed by researchers
Contributing back in return to the many benefits the FOSS
community gives us.

The original motivations were more ideological than practical

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

How the driver was merged (2010–2011)

Who, when, how
Merge process with pre-existing ./staging/ driver for the
Tundra Universe and TSI148 chips
Four-round process (Emilio G. Cota, Manohar Vanga)
Core device model modifications accepted by mid 2011

Lessons learned
It is hard, LKML and maintainers are tough
One must be prepared to compromise (design, APIs, tools)
One must build a reputation slowly
Requires patience

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

How the driver was merged (2010–2011)

Who, when, how
Merge process with pre-existing ./staging/ driver for the
Tundra Universe and TSI148 chips
Four-round process (Emilio G. Cota, Manohar Vanga)
Core device model modifications accepted by mid 2011

Lessons learned
It is hard, LKML and maintainers are tough
One must be prepared to compromise (design, APIs, tools)
One must build a reputation slowly
Requires patience

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

How the driver was merged (2010–2011)

Who, when, how
Merge process with pre-existing ./staging/ driver for the
Tundra Universe and TSI148 chips
Four-round process (Emilio G. Cota, Manohar Vanga)
Core device model modifications accepted by mid 2011

Lessons learned
It is hard, LKML and maintainers are tough
One must be prepared to compromise (design, APIs, tools)
One must build a reputation slowly
Requires patience

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Lessons learned

But the most important one was that our initial motivations

turned out to be wrong

Why?

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Lessons learned

But the most important one was that our initial motivations

turned out to be wrong

Why?

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Lessons learned

But the most important one was that our initial motivations

turned out to be wrong

Why?

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A typical data acquisition application: carrier

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

A typical data acquisition application: mezzanine

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

The FMC family of boards

This is a substantial part of our standard HW kit, currently
under development
(see http://www.ohwr.org/projects/fmc-projects).

carriers in PCIe and VME format
simple mezzanines with electronics for ADCs, DACs, DIO
and endless other applications
circuitry in the mezzanine
FPGA application logic in the carrier
logic in the FPGA is organized as a set of IP cores
interconnected through an internal bus named Wishbone

David Cobas et al. FOSS at CERN: Drivers in the Kernel

http://www.ohwr.org/projects/fmc-projects

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Architecture of the FMC drivers

Core Drivers

Carrier

Driver

FPGAID
MZ

Firmware

IP Cores

internal bus

x y z t u

x y z t u

Application

Bitstreams

....

....

xyzt...u

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Drivers for the FMC family

The main concepts for the design of these drivers are

modular structure that reflects the core structure of the
firmware
one-to-one mapping driver ↔ core (usually)
ability to dynamically load bitstreams by application

On the whole, the driver for the carrier board acts as a basic
firmware loader and a bridge driver (with device enumeration à
la PCI) between the host bus (PCIe, VME) and the FPGA
interconnection bus
It will be (we hope) the first Wishbone bus driver in the
mainstream kernel ⇒ will to go upstream, timeliness

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Drivers for the FMC family

The main concepts for the design of these drivers are
modular structure that reflects the core structure of the
firmware

one-to-one mapping driver ↔ core (usually)
ability to dynamically load bitstreams by application

On the whole, the driver for the carrier board acts as a basic
firmware loader and a bridge driver (with device enumeration à
la PCI) between the host bus (PCIe, VME) and the FPGA
interconnection bus
It will be (we hope) the first Wishbone bus driver in the
mainstream kernel ⇒ will to go upstream, timeliness

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Drivers for the FMC family

The main concepts for the design of these drivers are
modular structure that reflects the core structure of the
firmware
one-to-one mapping driver ↔ core (usually)

ability to dynamically load bitstreams by application
On the whole, the driver for the carrier board acts as a basic
firmware loader and a bridge driver (with device enumeration à
la PCI) between the host bus (PCIe, VME) and the FPGA
interconnection bus
It will be (we hope) the first Wishbone bus driver in the
mainstream kernel ⇒ will to go upstream, timeliness

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Drivers for the FMC family

The main concepts for the design of these drivers are
modular structure that reflects the core structure of the
firmware
one-to-one mapping driver ↔ core (usually)
ability to dynamically load bitstreams by application

On the whole, the driver for the carrier board acts as a basic
firmware loader and a bridge driver (with device enumeration à
la PCI) between the host bus (PCIe, VME) and the FPGA
interconnection bus
It will be (we hope) the first Wishbone bus driver in the
mainstream kernel ⇒ will to go upstream, timeliness

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Drivers for the FMC family

The main concepts for the design of these drivers are
modular structure that reflects the core structure of the
firmware
one-to-one mapping driver ↔ core (usually)
ability to dynamically load bitstreams by application

On the whole, the driver for the carrier board acts as a basic
firmware loader and a bridge driver (with device enumeration à
la PCI) between the host bus (PCIe, VME) and the FPGA
interconnection bus

It will be (we hope) the first Wishbone bus driver in the
mainstream kernel ⇒ will to go upstream, timeliness

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Drivers for the FMC family

The main concepts for the design of these drivers are
modular structure that reflects the core structure of the
firmware
one-to-one mapping driver ↔ core (usually)
ability to dynamically load bitstreams by application

On the whole, the driver for the carrier board acts as a basic
firmware loader and a bridge driver (with device enumeration à
la PCI) between the host bus (PCIe, VME) and the FPGA
interconnection bus
It will be (we hope) the first Wishbone bus driver in the
mainstream kernel ⇒ will to go upstream, timeliness

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Industrial I/O frameworks

In Linux staging area

Comedi
IIO

Drawbacks
do not suit our needs
interfaces are cumbersome

Then zio comes
Alessandro Rubini and Federico Vaga, main developers
Integration mainstream ab initio
See (soon) under http://www.ohwr.org/
Clean design conforming to Linux kernel practice

David Cobas et al. FOSS at CERN: Drivers in the Kernel

http://www.ohwr.org/

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Industrial I/O frameworks

In Linux staging area

Comedi
IIO

Drawbacks
do not suit our needs
interfaces are cumbersome

Then zio comes
Alessandro Rubini and Federico Vaga, main developers
Integration mainstream ab initio
See (soon) under http://www.ohwr.org/
Clean design conforming to Linux kernel practice

David Cobas et al. FOSS at CERN: Drivers in the Kernel

http://www.ohwr.org/

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Industrial I/O frameworks

In Linux staging area

Comedi
IIO

Drawbacks
do not suit our needs
interfaces are cumbersome

Then zio comes
Alessandro Rubini and Federico Vaga, main developers
Integration mainstream ab initio
See (soon) under http://www.ohwr.org/
Clean design conforming to Linux kernel practice

David Cobas et al. FOSS at CERN: Drivers in the Kernel

http://www.ohwr.org/

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Industrial I/O frameworks

In Linux staging area

Comedi
IIO

Drawbacks
do not suit our needs
interfaces are cumbersome

Then zio comes
Alessandro Rubini and Federico Vaga, main developers
Integration mainstream ab initio
See (soon) under http://www.ohwr.org/
Clean design conforming to Linux kernel practice

David Cobas et al. FOSS at CERN: Drivers in the Kernel

http://www.ohwr.org/

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Next candidates for (zio) integration

CERN-developed drivers for

Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial
boards
all the CERN BE/CO-supported FMC boards in the Open
Hardware Repository
timing receivers, White Rabbit, etc.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Next candidates for (zio) integration

CERN-developed drivers for
Struck SIS33xx ADCs

Tews TPCI200/TVME200 carries plus IPOCTAL serial
boards
all the CERN BE/CO-supported FMC boards in the Open
Hardware Repository
timing receivers, White Rabbit, etc.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Next candidates for (zio) integration

CERN-developed drivers for
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial
boards

all the CERN BE/CO-supported FMC boards in the Open
Hardware Repository
timing receivers, White Rabbit, etc.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Next candidates for (zio) integration

CERN-developed drivers for
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial
boards
all the CERN BE/CO-supported FMC boards in the Open
Hardware Repository

timing receivers, White Rabbit, etc.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Next candidates for (zio) integration

CERN-developed drivers for
Struck SIS33xx ADCs
Tews TPCI200/TVME200 carries plus IPOCTAL serial
boards
all the CERN BE/CO-supported FMC boards in the Open
Hardware Repository
timing receivers, White Rabbit, etc.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Why did we do it?

It gave us much more than we thought in the first place

Smoother maintenance in the (frequent) case of
kernel API changes.
Widespread distribution of the code base.
Contributing back to the the FOSS community.
Very strict process of peer review of the code by
knowledgeable and specialised maintainers.
Input (consulting!) from the topmost experts in the field.
Avoidance of suboptimal, ad hoc solutions in favour of the
best ones from the technical point of view.
Use of best practice and bleeding-edge tools selected by
experienced programmers, e.g. git, sparse and
coccinelle.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Why did we do it?

It gave us much more than we thought in the first place
Smoother maintenance in the (frequent) case of
kernel API changes.
Widespread distribution of the code base.
Contributing back to the the FOSS community.

Very strict process of peer review of the code by
knowledgeable and specialised maintainers.
Input (consulting!) from the topmost experts in the field.
Avoidance of suboptimal, ad hoc solutions in favour of the
best ones from the technical point of view.
Use of best practice and bleeding-edge tools selected by
experienced programmers, e.g. git, sparse and
coccinelle.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Why did we do it?

It gave us much more than we thought in the first place
Smoother maintenance in the (frequent) case of
kernel API changes.
Widespread distribution of the code base.
Contributing back to the the FOSS community.
Very strict process of peer review of the code by
knowledgeable and specialised maintainers.

Input (consulting!) from the topmost experts in the field.
Avoidance of suboptimal, ad hoc solutions in favour of the
best ones from the technical point of view.
Use of best practice and bleeding-edge tools selected by
experienced programmers, e.g. git, sparse and
coccinelle.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Why did we do it?

It gave us much more than we thought in the first place
Smoother maintenance in the (frequent) case of
kernel API changes.
Widespread distribution of the code base.
Contributing back to the the FOSS community.
Very strict process of peer review of the code by
knowledgeable and specialised maintainers.
Input (consulting!) from the topmost experts in the field.

Avoidance of suboptimal, ad hoc solutions in favour of the
best ones from the technical point of view.
Use of best practice and bleeding-edge tools selected by
experienced programmers, e.g. git, sparse and
coccinelle.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Why did we do it?

It gave us much more than we thought in the first place
Smoother maintenance in the (frequent) case of
kernel API changes.
Widespread distribution of the code base.
Contributing back to the the FOSS community.
Very strict process of peer review of the code by
knowledgeable and specialised maintainers.
Input (consulting!) from the topmost experts in the field.
Avoidance of suboptimal, ad hoc solutions in favour of the
best ones from the technical point of view.

Use of best practice and bleeding-edge tools selected by
experienced programmers, e.g. git, sparse and
coccinelle.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

The tsi148 bridge FMC boards The zio framework Conclusions and The Ultimate Goal

Why did we do it?

It gave us much more than we thought in the first place
Smoother maintenance in the (frequent) case of
kernel API changes.
Widespread distribution of the code base.
Contributing back to the the FOSS community.
Very strict process of peer review of the code by
knowledgeable and specialised maintainers.
Input (consulting!) from the topmost experts in the field.
Avoidance of suboptimal, ad hoc solutions in favour of the
best ones from the technical point of view.
Use of best practice and bleeding-edge tools selected by
experienced programmers, e.g. git, sparse and
coccinelle.

David Cobas et al. FOSS at CERN: Drivers in the Kernel

	The tsi148 bridge
	FMC boards
	The zio framework
	Conclusions and The Ultimate Goal

