



#### THE WONDERLAND OF OPERATING THE ALICE EXPERIMENT

The Challenges of Operating a Large Physics Experiment



# OUTLINE



- Introduction and context
- The evolution of the experiment
- The challenges and how to master them
  - How these challenges are different between experiments and accelerators
  - Justify the 'a' and 'e' in ICALEPCS...



André Augustinus CERN European Organization for Nuclear Research



### INTRODUCTION





1300 collaborators

• 116 institutes, 33 countries

- Heavy lon experiment
- 20 sub-detectors
- 16 x 16 x 26 m
- 10 000 tons
  - Contracting the second sec second sec

ICALEPCS 2011

André Augustinus CERN European Organization for Nuclear Research



### Pb – Pb Event





André Augustinus CERN European Organization for Nuclear Research

# Detector Control System



- Control & Monitoring 20 sub-detectors, 2 magnets, various services
  - 1 000 000 *channels*
- Designed as strict hierarchical system
  - Strict separation between sub-detectors
- Behaviour modelled with hierarchy of Finite State Machines
  - Commands going down, states coming up
  - Partitioning feature

# Detector Control System

- Implemented with commercial SCADA (PVSSII)
  - With CERN and ALICE specific extensions
- Applications developed by detector teams
- Over 150 controls PCs, 1200 networked devices



#### **Experiment Evolution:** From Installation to Routine Operation



- 2006: installation, debugging
- 2008: first collisions
- 2009: cosmics data, restart
- 2010: first full year of operation, first HI
- 2011: 'routine' operation

# The Evolution Challenge



- The Detector Control System has to
  - follow the evolution of the experiment equipment
  - follow the evolution of the use of DCS
  - follow the evolution of the users of DCS



#### The Evolution Challenge Experiment Equipment



- The experiment is a very dynamic object
  - Squeeze in more detectors at each opportunity
  - Devices to control (or the way to access them) is changing
- Likely to be more dynamic than the accelerator environment
  - If only because of 20 different, independent detector groups



#### The Evolution Challenge Use and Users of DCS



- Evolution of the use of DCS
  - Started off with debugging
  - Moved from local operation to central operation
- Evolution of the users of DCS
  - Started off with developers and experts
  - Evolution to detector experts to non-expert users



# From local to central operation



- Reducing number of operators
  - From 25 local, detector, operators to 5 central operators
- DCS was designed with central operation in mind
- More a psychological than a technical issue
  - Convince detectors to transfer control of their baby to a central operator





- The central operator needs dedicated tools
  - All sub-detectors need proper integration in central top level control system
    - Importance of homogeneous development upstream
    - Major coordination challenge
  - Tools to operate groups of detectors
  - Automation wherever possible
    - recurrent actions, actions that need to performed to guarantee safety of detector equipment e.g. on change of LHC beam mode



| $\left( \right)$ |             |
|------------------|-------------|
|                  | RNN         |
|                  | $(\Lambda)$ |
|                  | -X          |
|                  | $\sim$      |

|                                                                             |                 | Group A    | Group B    | Group C   | Group D     | Group E     | Group F     | Others      |  |
|-----------------------------------------------------------------------------|-----------------|------------|------------|-----------|-------------|-------------|-------------|-------------|--|
|                                                                             |                 | IS READY 🔻 | IS READY 🔻 | UNKNOWN - | NOT READY - | NOT READY - | NOT READY - | NOT READY - |  |
| Aco                                                                         | READY           | Aco        | Aco        | Aco       | Aco         | Aco         | Aco         | C Aco       |  |
| Emc                                                                         | READY           | Emc        | Emc        | Emc       | Emc         | Emc         | Emc         | Emc         |  |
| Fmd                                                                         | READY           | Fmd        | Fmd        | Fmd       | Fmd         | Fmd         | Fmd         | Fmd         |  |
| Hmp                                                                         | READY           | Hmp        | Hmp        | Hmp       | Hmp         | Hmp         | Hmp         | Hmp         |  |
| Mch                                                                         | MOVING_READY    | Mch        | Mch        | Mch       | Mch         | Mch         | Mch         | Mch         |  |
| Mtr                                                                         | READY           | Mtr        | Mtr        | Mtr       | Mtr         | Mtr         | Mtr         | Mtr         |  |
| Phs                                                                         | STANDBY         | Phs        | Phs        | Phs       | Phs         | Phs         | Phs         | ☐ Phs       |  |
| Pmd                                                                         | STBY_CONFIGURED | Pmd        | Pmd        | Pmd       | Pmd         | Pmd         | Pmd         | Pmd         |  |
| Sdd                                                                         | READY           | Sdd        | Sdd        | Sdd       | Sdd         | Sdd         | Sdd         | □ Sdd       |  |
| Spd                                                                         | READY           | Spd        | Spd        | Spd       | Spd         | Spd         | Spd         | ☐ Spd       |  |
| Ssd                                                                         | READY           | Ssd        | Ssd        | Ssd       | Ssd         | Ssd         | Ssd         | ☐ Ssd       |  |
| T00                                                                         | READY           | T00        | T00        | T00       | T00         | T00         | T00         | T T00       |  |
| Tof                                                                         | READY           | Tof        | Tof        | Tof       | Tof         | Tof         | Tof         | M Tof       |  |
| Трс                                                                         | READY           | Tpc        | Трс        | Tpc       | Tpc         | Трс         | Трс         | Tpc         |  |
| Trd                                                                         | READY           | Trd        | Trd        | Trd       | Trd         | Trd         | Trd         | Trd         |  |
| V00                                                                         | READY           | V00        | V00        | V00       | V00         | V00         | V00         | ☐ V00       |  |
| Zdc                                                                         | READY           | Zdc        | Zdc        | Zdc       | Zdc         | Zdc         | Zdc         | Zdc         |  |
| V0 rate = 163.22 kHz 400 300 none none 200 none none                        |                 |            |            |           |             |             |             | none        |  |
| enable radioboxes for changing groups/partitions panel by: Ombretta Pinazza |                 |            |            |           |             |             |             |             |  |

-DCS aroups

#### André Augustinus CERN European Organization for Nuclear Research







ICALEPCS 2011

André Augustinus CERN European Organization for Nuclear Research





- All these tools need to be flexible and configurable
  - Cope with changes in operation of the experiment
- Central operator need to react on anomalies in ALL sub-detectors
  - Tools to access procedures (and ensure they are valid)
  - Make sure only relevant messages reach the operator





- High turnaround of operators
  - Very specific to HEP culture
  - Many operators that only do few shifts
    - Not necessarily controls nor detector expert
  - As opposed to accelerator world
    - limited number of operators, that usually are controls or machine experts, that do many shifts
  - ALICE 2011: 926 shifts, more than 80 operators, on average only 11 days of operator shift work





- Requires huge effort for training
  - and administration
- Requires clear, extensive documentation understandable for non-expert, and easily accessible



# The Coordination Challenge



- Initial stage, development
  - To overcome cultural differences: Start coordinating early, strict guidelines
- During operation, maintenance and operation
  - Again, due to HEP culture, original developers tend to drift away
    - (apart for a few exceptions) very difficult to ensure continuity for the control systems in the projects
  - In many small detector projects, controls is done only part-time by a single person



# Conclusions



- Experiment environment evolves rapidly
  - DCS design: think scalability, flexibility
- Central operation
  - Cope with large number of operators
  - Adequate and flexible operation tools, automation
  - Easily accessible, explicit procedures
- Experiment world is dynamic, volatile
  - Requires a major coordination effort