<u>The RHIC* and RHIC Pre-Injectors</u> Controls Systems: Status and Plans

Kevin Brown Collider Accelerator Dept. (C-AD) Brookhaven National Laboratory

* Relativistic Heavy Ion Collider

Oct. 10 - 14, 2011

<u>Outline</u>

- Quick Tour of C-AD
- C-AD Controls Systems
- What RHIC has Achieved
- Future Directions at RHIC
- EBIS = Electron Beam Ion Source
- Bunched Beam Stochastic Cooling
- Feedback in RHIC
- eRHIC = Electron-Ion Collider

1

2

System Hardware Architecture

Some Reference Parameters

	2011
Number of front-end VME chassis	315
Number of read/write parameters (settings)	403,000
Number of read-only parameters (measurements)	502,000
Number of name server entries (devices & servers)	52,600
Total archive capacity	75 GB/day
Number of Named Items Archived	260,000
Total Amount of Data written to disk *	~15 TB/run
Trigger resolution of event system	100 ns
Time jitter of beam synchronous event clock	< 0.5 ns
Real-Time Data Link and time-of-day clock rate	720 Hz
Maximum time: loss-of-permit to beam abort	60 μs (5 turns)

* MOMAU002 Improving Data Retrieval Rates Using Remote Data Servers presenter: Bart Frak

Current Focus & Future Directions

- Cyber Security
 - our sophistication must grow to (even) match sophistication of new threats
 - Threats now reach deeper into the layers of the controls (Stuxnet)
- Operations (see <u>MOPKN021</u> Asynchronous Data Notification ...)
 - All digital MCR (no oscilloscopes) greater demand on software & reliability
 - Better data mining tools and improved access to large volumes of data
- Machine Protection (see: <u>WEPMU015</u> MPS for ERL)
 - reliability analysis
 - improved quench detection reliability
 - synchrotron radiation from high energy electron beams
 - high power electron beams
 - SRF systems
- Accelerator Physics
 - more compute intensive online models
 - more sophisticated online analysis
 - larger data volumes and bandwidth utilization
 - ORM & online optics measurements (as operations tools)
 - more beam physics based control (parametric, auto-correction, model based corrections)
- All digital controls
 - LLRF and instrumentation for feedback
- Feedback and new controls paradigms

LogView: log (archive) data viewer

AgsLossMonitor: Custom app example

"pet" parameter Page (contains ADO parameters)

RHIC Ramp Designer: Custom app

Kevin Brown

Oct. 10 - 14, 2011

BROOKHAVEN

Kevin Brown

11

Oct. 10 - 14, 2011

icalepcs 2011

Remote Windows based Scope control and display.

What RHIC has Achieved?

- RHIC is the first machine capable of colliding ions as heavy as gold.
 - RHIC has created a new state of hot, dense matter out of the quarks and gluons, called a <u>"perfect" liquid</u>, because it can be explained by the equations of hydrodynamics for a fluid with virtually no viscosity
 - RHIC's quark-gluon plasma exhibits other unusual properties
 - symmetry-altering bubbles speculated to have played important roles in the evolution of the infant universe
 - the heaviest antimatter nucleus yet discovered
 - RHIC Energy Range Appears to be a "Sweet Spot," allowing exploration of the onset of deconfinement and the search for the QCD critical point
- RHIC is the world's only machine capable of colliding beams of polarized protons to investigate the 'missing' spin of the proton
 - the spins of the proton's constituent quarks (and antiquarks), in some cases accounts for only about 30% of its total spin
 - RHIC spin experiments are providing the first information on how much the spin of gluons contributes to the proton's spin
 - measurements of the spin substructure of the proton may lead us beyond our current, still rudimentary understanding of how quarks move inside protons and other particles

Three Stages of RHIC's Future

Short-term (2011-2016): ongoing upgrades to RHIC \mathcal{L} , PHENIX & STAR fuel well-defined program addressing key open questions, most encoded in NP performance milestones for dense matter and spin

Medium-term (2017-2022): further upgrades selected from PHENIX, STAR and collider Decadal Plans, as needed for quantitative pursuit of long-term questions outlined above for A+A, d(p)+A, and $\overrightarrow{p}+\overrightarrow{p}$ (including refinement/resolution of issues from short-term results)

Long-term (> 2022): $eRHIC - add \sim 5 \text{ GeV}$ (upgradable to 30 GeV) electron Energy Recovery Linac inside RHIC tunnel to facilitate e+A, $\overrightarrow{e+p}$ (³He) studies of gluon-dominated cold matter

EBIS – Electron Beam Ion Source

<u>EBIS</u>

- Replaces the Tandem Van de Graaff's as the source of heavy ions
- All ion species including noble gas ions (NSRL^{*}), uranium (RHIC) and polarized He³ (eRHIC) (~ 1-2 x 10¹¹ charges/bunch with ε_{N,rms} = 1-2 μm)
- Operated reliably for NSRL with He⁺, He²⁺, Ne⁵⁺, Ne⁸⁺, Ar¹¹⁺, Ti¹⁸⁺, Fe²⁰⁺
- Expect to provide Au and U for RHIC in 2012
- For Controls (a modest project):
 - 5 Hz PPM Operation (Capability to switch ion species at 5 Hz)
 - Standard hardware interfaces
 - New applications for project specific controls

* NASA Space Radiation Laboratory

Electron lenses – partial head-on beam-beam compensation

Electron gun

Wolfram Fischer

Polarized proton luminosity limited by head-on beam-beam effect $(\Delta Q_{bb,max} \sim 0.02)$

Basic idea:

In addition to 2(3) beam-beam collisions with **positively** charged beam have another collision with a **negatively** charged beam with the same amplitude dependence.

Exact compensation for:

- short bunches
- $\Delta \psi_{x,y} = k\pi$ between p-p and p-e collision
- no nonlinearities between p-p and p-e
- same amplitude dependent kick from p-p, p-e

Solenoid CSB

Solenoid CS2

Solenoid CS1

only approximate realization possible

Electron collector

e-qur

colle

Luminosity Increase with Stochastic Cooling

Feedback Systems

• In RHIC

- Tune/Coupling using Base Band Tune (BBQ) measurement system
- Orbit Feedback using existing orbit system (>400 bpm measurements) and correctors (through the controls system at 1 Hz)
- Chromaticity feedback using BBQ measurement system
- Feedback system to correct ~10 Hz beam position oscillations using turn by turn bpm's and dedicated corrector magnets (BPM data @ 10kHz for 36 signals)
- Other systems
 - Injection dampers (injection coherence correction)
 - AGS orbit feedforward for polarized protons (with near integer tune)
 - Longitudinal quad mode damper (under development)

Beam control improvement – feedbacks on ramp

R. Michnoff et al

<u>eRHIC – Electron-Ion Collider</u>

Add electron accelerator to the existing \$2B RHIC

Kevin Brown

Oct. 10 - 14, 2011

icalepcs

2011

Why an Electron-Ion Collider?

- Precision imaging of the sea-quarks and gluons to determine the spin, flavor and spatial structure of the nucleon
- Definitive study of the universal nature of strong gluon fields in nuclei.
- Improve our understanding of the strong force and the properties of gluons

quark and gluon contributions to the proton spin

spatial distribution of quarks and gluons in nucleons/nuclei

strong color fields in AA, pA, and eA

23

eRHIC: polarized electrons with $E_e \le 30$ GeV will collide with either polarized protons with $E_e \le 250^*$ GeV or heavy ions $E_A \le 100^*$ GeV/u

Thank You!

Please see:

- <u>MOMAU002</u> Improving Data Retrieval Rates Using Remote Data Servers presenter: Bart Frak
- <u>MOPKN021</u> Asynchronous Data Notification between Database Server and Accelerator Control Systems presenter: Seth Nemesure
- <u>WEPMU015</u> The Machine Protection System for the R&D Energy Recovery LINAC presenter: Jim Jamilkowski
- <u>MOPMU027</u> Controls System Developments for the ERL Facility presenter: Jim Jamilkowski

25

