The ATLAS Detector Control System

Dr. Stefan Schlenker CERN Geneva

for the ATLAS DCS Community

Dr. Stefan Schlenker, CERN

- Largest of four LHC experiments
- 7000 tonnes, ~100 million read-out channels, 3000 km of cables
- Contains 11 sub-detectors of different technologies in layer structure
- Built and operated by collaboration of >3000 physicists

Operation with collisions since end 2009

- Largest of four LHC experiments
- 7000 tonnes, ~100 million read-out channels, 3000 km of cables
- Contains 11 sub-detectors of different technologies in layer structure
- Built and operated by collaboration of >3000 physicists

Operation with collisions since end 2009

46 m

Dr. Stefan Schlenker, CERN

- Largest of four LHC experiments
- 7000 tonnes, ~100 million read-out channels, 3000 km of cables
- Contains 11 sub-detectors of different technologies in layer structure
- Built and operated by collaboration of >3000 physicists

Operation with collisions since end 2009

46 m

- Largest of four LHC experiments
- 7000 tonnes, ~100 million read-out channels, 3000 km of cables
- Contains 11 sub-detectors of different technologies in layer structure
- Built and operated by collaboration of >3000 physicists

Operation with collisions since end 2009

DCS Architecture

- ► Controls hierarchy:
 - 1. Front-End (FE): detector interface
 - 2. Local Back-End (BE): FE connection, readout, processing
 - 3. Sub-detector BE: grouping different technologies, standalone operation
 - 4. Global BE: interfaces to operators, storage and external facilities

DCS Front-End

DCS Front-End Components

 Industrial Power Supplies & Crates (CAEN, Wiener, ISEG), read out and controlled via CAN/Ethernet

- Few PLCs read out via Mod-bus (managed by CERN infrastructure)
- Custom built low-cost I/O concentrator: Embedded Local Monitoring Board
 - ► 64 analog inputs (16-bit ADC) and 32 digital I/O channels
 - ATmega128 microcontroller (8 bits, 4 MHz)
 - CAN controller for communication over field-bus
 - Powered by custom power supply via CAN bus (or hosting board)
 - Modular, remotely upgradable firmware
 - CANopen OPC server for communication with back-end
 - Radiation hard up to 50 Gy, tolerant to magnetic field >1.4T
 - ▶ More than 5000 ELMBs in use in ATLAS (detector, counting rooms), >10k LHC-wide

13th ICALEPCS, 10-14th October 2011, WTC Grenoble, France

Dr. Stefan Schlenker, CERN

DCS Back-End

Components and Usage

- Front-End interfaced to individual control stations (server PCs), Windows/Linux
- Stations run SCADA software PVSS II (Siemens), allows distribution of applications
- Data exchanged via OPC (standard), Modbus (PLCs), DIM (anything else)
- Conditions data can be streamed to relational database (Oracle)
- Low level alarm system for individual parameters crossing thresholds

Back-End Integration

Sub-systems

- Distributed system of >130 stations in private network
- Control applications implemented by ~50 different sub-system developers based on event driven processing of >10⁷ data elements

External Systems

- Information servers dedicated to communication with external controls systems (Safety, Magnets, Cryo, Gas, Cooling,..., LHC)
- Middleware: JCOP
 Data InterchangeProtocol

Scaling Behavior

- Hierarchy approach pays off
- PVSS scaling becomes an issue on global level (influencing next version...)

System	Component	# Servers (Appl.)	# Archived Parameters	Iotal # Parameters	# FSM Objects
Inner Detector	Pixel	11(12)	57k	1'086k	9.1k
	Silicon strips	11(11)	106k	1'265k	14.7k
	Transit. radiation	11(11)	69k	123k	13k
	Services	7(8)	16k	494k	3.7k
Calorimeters	Liquid Argon	13(13)	27k	910k	8.3k
	Tile	5(5)	51k	719k	2.4k
Muon Spectrometer	Drift tubes	29(29)	214k	3'229k	19.2k
	Cathode strip	2(2)	1.3k	109k	0.6k
	Resistive plate	7(7)	139k	1'597k	2.5k
	Thin gap	7(7)	81k	1'225k	10k
	Services	2(2)	0.7k	55k	0.04k
Forward detectors		4(4)	4.9k	194k	0.9k
Common Services	Counting rooms	7(7)	23k	568k	4.7k
	Trigger & DAQ	2(2)	11k	386k	1.3k
	External+safety	4(6)	8.0k	144k	0.4k
	Global services	9(13)	1.2k	222k	0.4k
Total		131(139)	809k	12.3M	91.2k

Back-End Integration

Sub-systems

- Distributed system of >130 stations in private network
- Control applications implemented by ~50 different sub-system developers based on event driven processing of >10⁷ data elements

External Systems

- Information servers dedicated to communication with external controls systems (Safety, Magnets, Cryo, Gas, Cooling,..., LHC)
- Middleware: JCOP
 Data InterchangeProtocol

Scaling Behavior

- Hierarchy approach pays off
- PVSS scaling becomes an issue on global level (influencing next version...)

System	Component	# Servers (Appl.)	# Archived Parameters	Total # Parameters	# FSM Objects
Inner Detector	Pixel	11(12)	57k	1'086k	9.1k
	Silicon strips	11(11)	106k	1'265k	14.7k
	Transit. radiation	WEMAU005, J. OLSZOWSKA ET AL.			
	Services	7(8)	16k	494k	3.7k
Calorimeters	Liquid Argon	13(13)	27k	910k	8.3k
	Tile	G. RIBEIRO ET AL.			
Muon	Drift tubes	20/201	ク1 /レ	२' २ २०₽	10 2k
	Cathode strip				
	Resistive plate	MOPMN014, S. ZIMMERMANN ET AL.			
Spectrometer	Thin gap				
	Services	<u> ۲</u> (۲)	V./ N	JJN	
Forward detectors		4(4)	4.9k	194k	0.9k
Common Services	Counting rooms	7(7)	23k	568k	4.7k
	Trigger & DAQ	2(2)	11k	386k	1.3k
	External+safety	4(6)	8.0k	144k	0.4k
	Global services	9(13)	1.2k	222k	0.4k
Total		131(139)	809k	12.3M	91.2k

Back-End Integration

Sub-systems

- Distributed system of >130 stations in private network
- Control applications implemented by ~50 different sub-system developers based on event driven processing of >10⁷ data elements

External Systems

Information servers dedicated to communication with external controls systems (Safety, Magnets, Cryo, Gas, Cooling, ..., LHC)

System	Component	# Servers (Appl.)	# Archived Parameters	Total # Parameters	# FSM Objects	
Inner Detector	Pixel	11(12)	57k	1'086k	9.1k	
	Silicon strips	11(11)	106k	1'265k	14.7k	
	Transit. radiation	WEMAU005, J. OLSZOWSKA ET AL.				
	Services	7(8)	16k	494k	3.7k	
Calorimeters	Liquid Argon	13(13)	27k	910k	8.3k	
	Tile	G. RIBEIRO ET AL.				
	Phillip I. I. A. A.	p.p. (p.p.)		2,22014	10.01	

 Gas, Cooling, Need for higher level architecture due DataInterchangePrototo heterogeneity and complexity

Scaling Behavior

- Hierarchy approach pays off
- PVSS scaling becomes an issue on global level (influencing next version...)

				JJN	
Forward detectors		4(4)	4.9k	194k	0.9k
	Counting rooms	7(7)	23k	568k	4.7k
Common Services	Trigger & DAQ	2(2)	11k	386k	1.3k
	External+safety	4(6)	8.0k	144k	0.4k
	Global services	9(13)	1.2k	222k	0.4k
Total		131(139)	809k	12.3M	91.2k

MERMANN ET AL.

13th ICALEPCS, 10-14th October 2011, WTC Grenoble, France

State Machine Hierarchy

Reduce complexity!

- Detector control mapped to state machine hierarchy above SCADA layer
- Using JCOP FSM software framework (C. GASPAR ET AL. 2006)
- Device States are propagated upwards using state rules, Commands propagated downwards
- Error handling upwards using parallel tree of *Status* objects linked to device alarms
- Allows for single operator

13th ICALEPCS, 10-14th October 2011, WTC Grenoble, France

State Machine Hierarchy

Reduce complexity!

- Detector control mapped to state machine hierarchy above SCADA layer
- Using JCOP FSM software framework (C. GASPAR ET AL. 2006)
- Device States are propagated upwards using state rules, Commands propagated downwards
- Error handling upwards using parallel tree of *Status* objects linked to device alarms
- ► Allows for single operator

State Machine Hierarchy

Reduce complexity!

- Detector control mapped to state machine hierarchy above SCADA layer
- Using JCOP FSM software framework (C. GASPAR ET AL. 2006)
- Device States are propagated upwards using state rules, Commands propagated downwards
- Error handling upwards using parallel tree of *Status* objects linked to device alarms
- ► Allows for single operator

Operator Control

ATLAS

rgc C

EXT TDO FWD

SAFET

Human-Machine-Interfaces

- Alarm Screen enabling quick recognition and response to problems
- Homogeneous navigation through state machine hierarchy for operator with custom HMI
- Each state machine object has associated panel (synoptics, trends etc.)
- Access control mechanism fully synched with LDAP and shift management
- ► Web monitoring, no load on Back-End, history mode

13th ICALEPCS, 10-14th October 2011, WTC Grenoble, France

Dr. Stefan Schlenker, CERN

Operator Control

ATLAS

мот

TGC csc CIC

EXT TDO LHC

FWD

SAFET DCS RE

Human-Machine-Interfaces

- Alarm Screen enabling quick recognition and response to problems
- Homogeneous navigation through state machine hierarchy for operator with custom HMI
- Each state machine object has associated panel (synoptics, trends etc.)
- Access control mechanism fully synched with LDAP and shift management
- ► Web monitoring, no load on Back-End, history mode

Data Management

Data Handling

- Use of Oracle databases (CERN IT services)
- Configuration DB: 1.6 GB
- Conditions DB: 6.6 GB/day, replicated for offline use
- Non-negligible maintenance

Data Access

- Directly from PVSS (trends, script-based) via OnlineDB
- Implemented dedicated web-based DCS Data Viewer (DDV)
 - DCS data access world-wide, can be embedded in any web-page
 - Generic approach allows use in other experiments (done in COMPASS)

Control Stations

Configuration

13th ICALEPCS, 10-14th October 2011, WTC Grenoble, France

Dr. Stefan Schlenker, CERN

Applications (Viewers,

Reconstruction)

Data Management

Data Handling

- Use of Oracle databases (CERN IT services)
- Configuration DB: 1.6 GB
- Conditions DB: 6.6 GB/day, replicated for offline use
- Non-negligible maintenance

Data Access

- Directly from PVSS (trends, script-based) via OnlineDB
- Implemented dedicated web-based DCS Data Viewer (DDV)
 - DCS data access world-wide, can be embedded in any web-page
 - Generic approach allows use in other experiments (done in COMPASS)

2000

Total PVSS Insert Rate

13th ICALEPCS, 10-14th October 2011, WTC Grenoble, France

Physics

Conditions

DB

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS

Example: Synchronization of DCS with LHC operation and physics run control

- Detector safety requires lower voltage levels during unstable beam conditions
- Communication with LHC control room using semi-automatic handshake procedure
- Detector state change automated, synchronization with DAQ run control system (trigger)
- Audible notifications from DCS to ease shift operation
- Beam backgrounds and luminosity monitored via DCS

Maintenance & Operations

Tasks

- Operations-driven consolidation (problem recovery automation etc.)
- Building documentation: direct access from UIs to generic TWiki
- Routine hardware replacements (PCs, FE-BE interfaces)
 - Replace PCI based solutions to USB/Ethernet
- Software maintenance (OS, security patches, PVSS, drivers etc.)

► Migration to Linux:

- Windows needs high administration effort, high security constraints
- Need to replace OPC standard: OPC Unified Architecture (under development for CANopen/ELMB, vendors interested)
- Development on test systems, production updates only in technical stops
 - Large scale production mirror (software only)
 - Small scale hardware setups
- Software organized in repository, versioning essential (SVN)
- Reduced manpower requires merging of expertise and responsibilities, time consuming!

Future Upgrades

Upgrade Constraints

Higher luminosity I need to increase radiation tolerance for cavern equipment by factor ~10

ELMB successor: ELMB++, still in conception stage

- Radiation hardness!
- Backwards compatibility
- Fix bugs, support new connectivity (Ethernet?) and users

Phase I:

- new Pixel Inner B-Layer (new powering, Cooling)
- ► Fast Track Trigger (electronics)
- Phase II: Replace complete inner detector, needs at least complete new design of DCS Front-End

Summary

- Highly distributed control system using SCADA software PVSS scales well (10⁷ parameters)
- Reducing complexity using hierarchical structure and state machine logic
- System proven to manage routine detector operation well
- Continuous consolidation and automation
- Preparation of future upgrade

Run Number: 152221, Event Number: 383185

Date: 2010-04-01 00:31:22 CEST

 $p_{T}(\mu+) = 29 \text{ GeV}$ $\eta(\mu+) = 0.66$ $E_{T}^{miss} = 24 \text{ GeV}$ $M_{T} = 53 \text{ GeV}$

W→µv candidate in 7 TeV collisions

 $p_T(\mu+) = 29 \text{ GeV}$ $\eta(\mu+) = 0.66$ $E_T^{\text{miss}} = 24 \text{ GeV}$ $M_T = 53 \text{ GeV}$

Run Number: 152221, Event Number: 383185

Date: 2010-04-01 00:31:22 CEST

It works!

W→µv candidate in 7 TeV collisions