

Commissioning of the Fermi@ELETTRA Fast Trajectory Feedback

G. Gaio, M.Lonza, R.Passuello, L.Pivetta, G. Strangolino Sincrotrone Trieste, Trieste, Italy

Presented by Giulio Gaio

Feedback layout

- Network
- Frontend computers
- Beam position monitors
- Correctors
- Time schedule
- Algorithms
- Operative results

CPU: Frontend Computers

Operating system: Linux, kernel 2.6.25
Control system: Tango

 In order to support a **50Hz** feedback, sensor acquisitions, processing and actuator settings have to be performed in just a **few ms**.

 Worst jitter case for a "simple application" running in userspace (plain Linux): 37 ms

Real-time patch: Xenomai 2.4.8
Best jitter case for a "small" piece of code executed in an interrupt handler (Xenomai): 23µs

 Data acquisition and calculations are executed in the interrupt handlers of Gigabit, VME, and programmable timers.

Kernel module (xx.ko)

Tango Server

Stripline BPM

55 sBPM installed 6 VME PPC Crates Up to 15 sBPM x CPU

sBPM

Libera Single Pass (I-Tech)

100 Mbit/s port for monitoring

1 Gbit/s port for data transmission

- Each sBPM generates 1100 bytes (UDP) per shot (position + 4 raw waveforms)

CPU

 Data collected in the CPU ethernet ISR

sBPM positions acquired in about
 140 µs

Cavity BPM

25 cBPM installed 3 VME PPC Crates Up to 12 cBPM x CPU

cBPM

•Two (ADC/DAC) uTCA boards (manifactured by Elettra) :

- ADO: get signals from cBPM frontend
- ADA: drive calibration signal

100 Mbit/s ethernet port for monitoring and data transmission
Each cBPM system generates 6.3 KB each shot (4 signal waveforms + 4 calibration waveforms)

CPU

Position calculation and supervision performed on the CPU (ethernet ISR)
Current max rep. rate: 10 Hz

Correctors

- 146 of them are correctors

- 11 VME PPC crates
 Up to 40 PS x CPU
- 2 Models: A2605 (5Amp), A2620
- (20Amp) (manifactured by Elettra)
- 100 Mbit/s ethernet port

 Up to 200 Hz maximum current setting rate (UDP)

CPU

6 ms after the beam shot, a timer (10kHz) triggers a realtime process to send current settings (round robin scheme) to each of the PS
correctors PS set in 2 ms

Feedback time schedule

 Since all feedback operations are performed in the intra-shot period, the closed loop dynamics is only dominated by one sample delay.

- Selectable input filters:
 - IIR
 - Median
 - Heuristic despiking rules
- **PID** controller + harmonic suppressors (notch filters)
- Developed a tool in Matlab to simulate the closed loop model
- Validated the real system (repetition rate 10Hz) with the model (beam excited with a set of sinusoids)
- MIMO: SVD to invert the Response Matrix

Feedback layout

Linac Fast Trajectory Feedback: 34 BPM x 34 COR

Undulator Fast Trajectory Feedback: 8 BPM x 8 COR

Feedback configuration

13

Shot to shot matrix calculation integrated in the feedback

- The power supplies are driven sequentially with multiple
 programmable current ramps
- In the meanwhile the BPMs are acquired synchronously to the corrector excitation
- If a corrector strength is so high to kick off the beam, ramp amplitude automatically is decreased and measure is repeated
- Algorithm calculates the response matrix correlating ramped kicks and trajectory distortions (linear regression)
- Calculation performed at the same time on **both planes** (option)

Start RM Calc					
Store RM	ftf0_77_b34_c34	_20110928_1005	15.itpp		
Load RM					
Abort RM Calc					
Calculate					
	RM Correlation Range:		0.130		_
		0		_	
	RM Num. Points:	<u></u>	2		_
	RM Num. Waves:		2		_
	RM Recovery Samples:		0		
	RM Fast Mode 🕱			RM Ramp Mode 🕱	
On Set Refe	rence 0 Slow Mode	Steer Mode	Standby	Off	10

Shot to shot matrix calculation integrated in the feedback

- The power supplies are driven sequentially with multiple
 programmable current ramps
- In the meanwhile the BPMs are acquired synchronously to the corrector excitation
- If a corrector strength is so high to kick off the beam, ramp amplitude automatically is decreased and measure is repeated
- Algorithm calculates the response matrix correlating ramped kicks and trajectory distortions (linear regression)
- Calculation performed at the same time on **both planes** (option)

	Trajectory	Plots	Corr. Plo	ots	RM Calc	ulation		_
		Start RM	Calc]			
	Store RM [ftf0_77_b34_c34						34_20110928_100515.itpp -	
		Load	RM]			
		Abort RM	1 Calc]			
	Calculat	e						n I
				RM C	orrelatio	on Range:	. 0.130	
					Maximur	m Retries:		
					RM Nur	m. Points:	2	
					RM Nur	m. Waves:	2	
				RM F	lecovery	Samples	0	
					RM Fast	t Mode 🗶	RM Ramp Mode 🗙	
Normal	Expert							
	ON OFF RESET CYCLE	Cur Power s	4.0 8.0 12.0 16.0 +0 2.8 ∀ ♥ ♥ www.server.ex	0.0 4. 2.9 20 A	0 8.0 12.0 16.0 .0 APPLY 2.8749 [Aj		
Current	Current Set	Sho	ow Plots				1	
3-								
2.9								
2.85							Steer Mode Standby Off ON	0
2.8							edback is ON	_
2.75								1
7	50 760	770	780	790	800	810		

Response matrix calculation

aelettra

15

Response matrix calculation

aelettra

16

Response matrix calculation

ICALEPCS2011, Grenoble , 10-14 October 2011 Giulio Gaio – Commisioning of the FERMI@Elettra Fast Trajectory Feedback

aelettra

Closed loop data

Transverse beam stability specifications: $\Box \leq 20 \ \mu m \ rms$ (hor/ver) in Linac area (avoid wakefields effects) $\Box \leq 10 \ \mu m \ rms$ in Undulator area (to preserve FEL)

Noise sources (mainly in Linac):

Thermal drifts

 Performance drifts of accelerators components
 Discharges in RF plants (spikes) and erratic trips of RF/Timing

Loop OFF

Hor. avg. rms: **19 μm** Ver. avg. rms: **10 μm Loop ON** Hor. avg. rms: **18 μm** Ver. avg. rms: **11 μm**

BPM resolution: 10 µm

Feedback operations

Feedback is used to:

- **Stabilize the trajectory** during experimental shitfs.
- Perform trajectory scans into accelerating structures to find the trajectory which minimizes beam emittance: this is done with feedback ON by changing the setpoints
- Restore a golden trajectory _
- Decouple operations during machine commisioning shifts; keep the beam trajectory stable when:
 - Change beam energy:
 - Change RF phases
 - Switch off accelerating structures
 - Change of machine optics

.

🚺 Figure 3: L03.01 VERT - K08 _ 🗆 🗙 <u>E</u>dit ⊻iew Insert Tools Desktop Window Help 🗋 🗃 🛃 🖕 🔍 🤍 🖑 🕲 🐙 🖌 - 🗔 🔲 🖽 💷 💷 22 1.21 1.2 0.5 1 1 9 1 18 Actuator2 1.17 1.16 1.15 1.14 1.13 -1.5 -15 -1 -0.5 n 0.5 15 Actuator Trajectory Plots Corr. Plots RM Calculatio eedback/ftf0/TraiHo po1/2011-06-21T034100.mat 03+50+25 03-07 truct('dvalue', [1,x], 'svalue', {{'rtbpm_103.01 struct('dvalue', [1,x], 'svalue', {{'rtbpm_102.04 feedback/ftf0/TraiVer .01/VerSigma 0n Set Reference 0 X Slow Mode Standby Off STANDE

ICALEPCS2011, Grenoble , 10-14 October 2011 Giulio Gaio – Commisioning of the FERMI@Elettra Fast Trajectory Feedback

orceFbCorr. to 0 TransferFbCor

Feedback interface

GUI (provisional) configured on the fly by reading the list of bpms and correctors from the feedback Tango device

Main commands

On/ Off / Standby

Goto Reference Trajectory

SlowMode

true: slow controller (ki =0.01) *false*: fast controller (ki =0.2)

SteerMode

true: no SVD regularization *false*:Tikhonov regularization

ZposMin, ZposMax

Apply the feedback only on a part of the machine (meters from the gun)

Many thanks for your attention!!!