

Stanford Synchrotron Radiation Laboratory

Development of the Machine Protection System for LCLS-I

John Dusatko SLAC National Accelerator Laboratory

John Dusatko jedu@slac.stanford.edu

October 14, 2011

Talk Outline

- 1) Introduction
- 2) History
- 3) System Overview
- 4) The Link-Node
- 5) System Software
- 6) Operational Experience

2

7) Future Directions

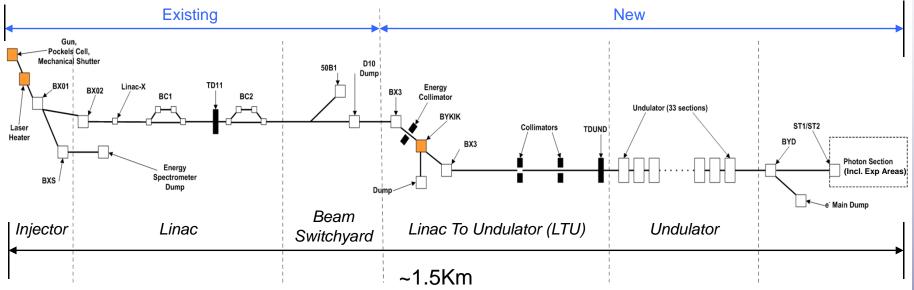
Introduction

Linac Coherent Light Source–I

(was just LCLS before LCLS-II came along...)

- Pulsed X-ray FEL
- Uses last 1/3rd of Linac + new injector, new e⁻ transport line, undulator and X-ray beam line
 - 120Hz maximum rate

Goal of MPS:


- Prevent the machine (and others) from hurting itself by switching off e-beam
- LCLS requirement: respond within 8.3ms
 - LCLS MPS actually responds within 2.78ms

Stanford Synchrotron Radiation Laboratory

LCLS-I – Schematic View

MPS Sensors:

- Vacuum Valve Position
- Waterflow Status
- Magnet Power Supply Status
- Temperatures
- In-beam Diagnostics Status
- Beam Position
- Beam Charge
- RF System Status
- Beam Containment Status
- Beam Loss Monitors

MPS Mitigation Devices:Laser Heater Mechanical Shutter

- Photocathode Laser Mechanical Shutter
- Gun Trigger Permit
- Pre-Undulator Fast Kicker (ByKIK)

Some History

Original SLAC Linac MPS (c. 1960s):

- ON/OFF only: Inhibited injector triggers based on sensor states
- Tone Based / Hardwired System / Discrete transistors
- Capable of responding in 1ms
- Stanford Linear Collider (SLC) MPS (c. 1980s):
 - Allowed rate limiting (plus shutoff) & programmable algorithms
 - CAMAC & VME based with MIL-STD-1553 data link for comms
 - Capable of responding within 2-3 beam pulses
- → Both of these systems ran in parallel and were still use when LCLS came along

The LCLS-I MPS

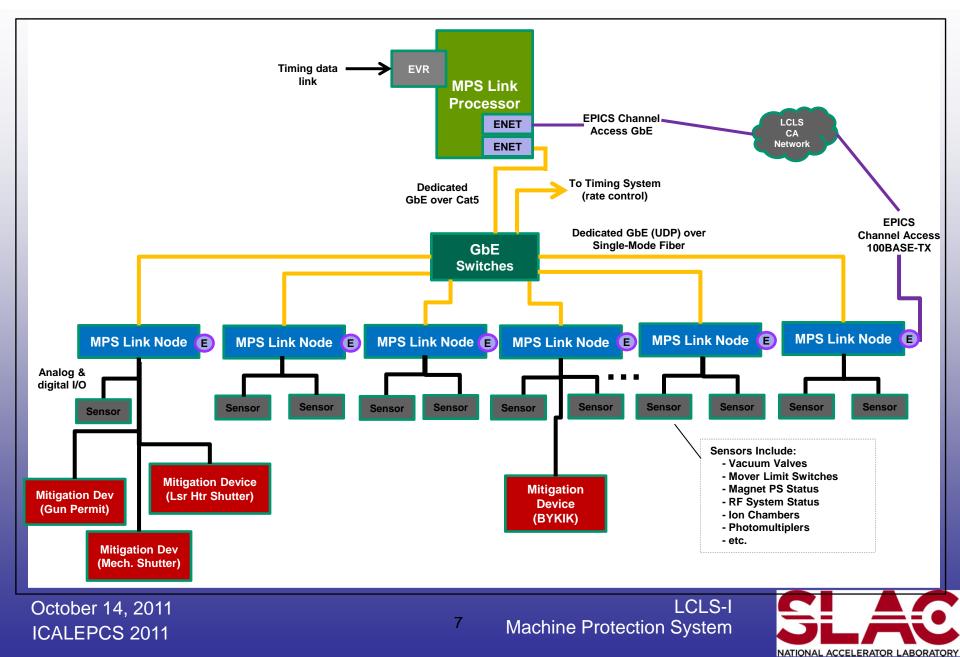
- A star network consisting of two entities: Link Processor and Link-Nodes
 - Interconnected over private GigbE network

Link Processor:

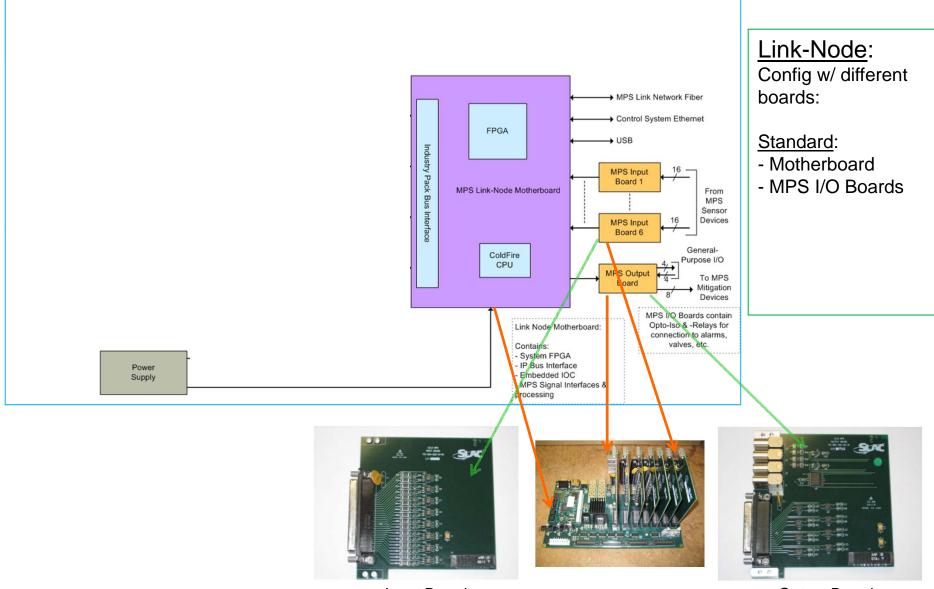
- Runs MPS algorithm
- Makes decisions based on sensor states
- Interfaces to timing system

Link-Node:

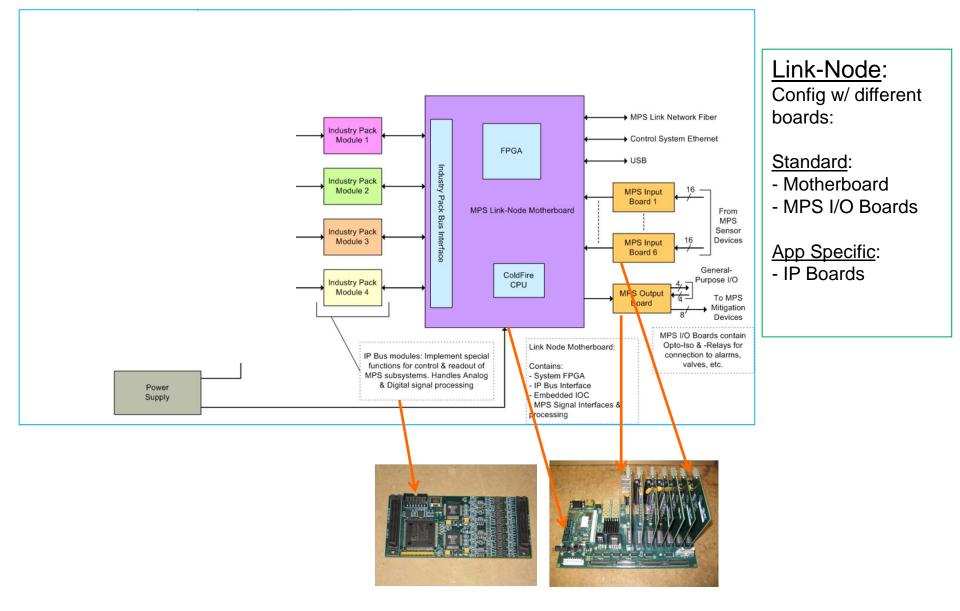
- Sensor signal collection point
- Drives mitigation devices
- Integrates sensor subsystems



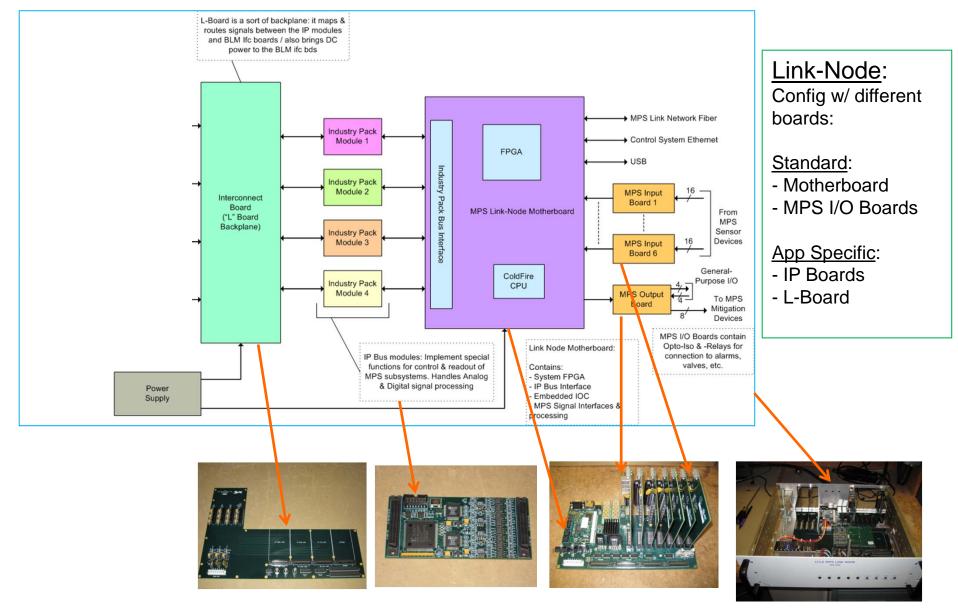
Stanford Synchrotron Radiation Laboratory

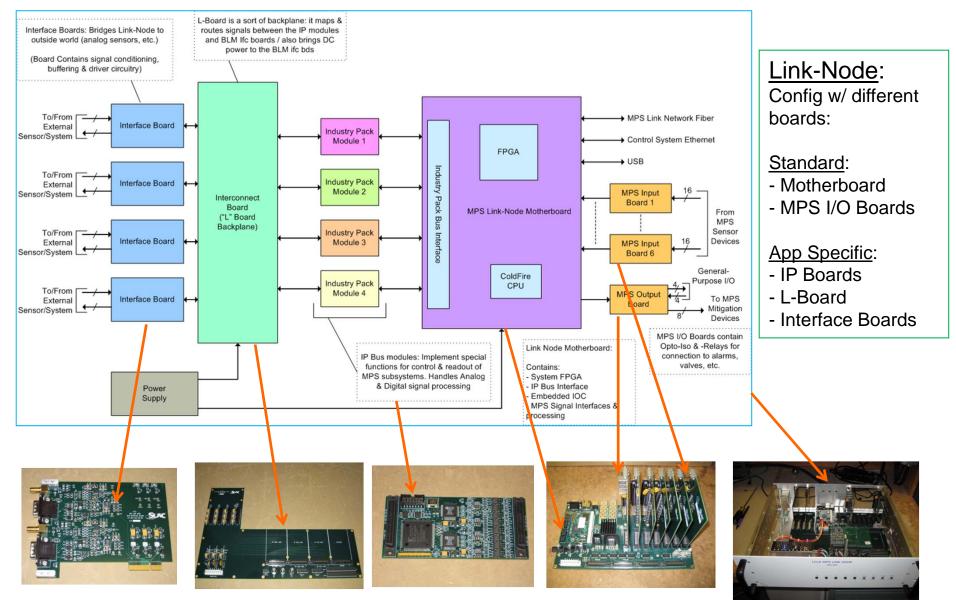

Link-Node Architecture

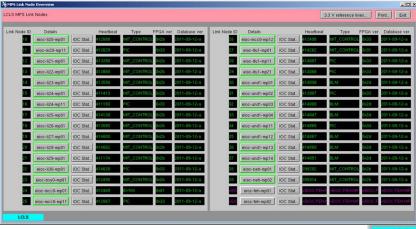
- Link-Node:
 - 3u chassis with configurable board arrangement
 - Main motherboard with arrangement of other boards
 - Contains:
 - MPS "Engine" in Virtex-4 FPGA
 - MPS Digital I/O
 - Embedded Coldfire CPU
 - Industry Pack (IP) bus interface
 - GigE Interface (FPGA core)
 - USB 1.0 Interface (dev & maintenance)
 - Configured in different "flavors":
 - Standard (MPS Digital I/O Only)
 - BLM (Undulator Beam Loss Monitor Ifc)
 - PIC (Beam Loss Ion Chamber Ifc)
 - ByKIK (Fast Kicker Magnet Ifc)

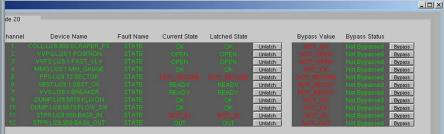


Input Board


Output Board






Stanford Synchrotron Radiation Laboratory

System Software

Link Node Main

Link Node Fault States

LCLS-I

LCLS

-OX LCLS MPS Link Node: 34 PICM:UND1:MP11 Print... Exit -OX MPS Link Node PIC UND1 MP11 Lo - 0 × CLS MPS Link Node: 34 ICM:UND1:MP11 Print... Exit CLS MPS Link Node: 34 ICM:UND1:MP11 Print... Exit FPGA ver Database ver Heartbeat Type bettom Protection Ion Chamber Module P1 QADC Thresholds Main Range Axis 💌 🛶 34 Protection Ion Chamber Module P1 Loss Readbacks Channel Name Low High Debounce registers (read/write) use Name L use Name H Type normal 💌 left 💌 Plot Most Recent (V) 1 Sec (V) 1/10 Sec (V) 1/30 Sec (V) use Name 10 use Name 30 1/60 Sec (V) Channel Name PICM:DMP1:698:P1_LOSS 0.350 1.400 Latched Faults (read) Fiducial Setup (read/write) use Name use Name 1 use Name 60 PICM:DMP1:699:P1_LOSS 0.350 1.400 1 PICM:DMP1:698:P1 LOSS States (read) Temperatures and voltages (read) Archive of PICM:UND1:34-3:P1 LOSS -9.900 9.900 2 PICM:DMP1:699:P1_LOSS Autorecoverable (read) Arcturus flash contents (read) PICM:UND1:34-4:P1_LOSS -9.900 9,900 3 PICM:UND1:34-3:P1_LOSS High Voltage ON Deadmen (read) PICM:UND1:34-5:P1_LOSS -9.900 9.900 4 PICM:UND1:34-4:P1_LOSS Analog PICM:UND1:34-6:P1_LOSS -9.900 9.900 5 PICM:UND1:34-5:P1_LOSS PIC Module 1 PICM:UND1:34-7:P1_LOSS -9.900 9.900 6 PICM:UND1:34-6:P1_LOSS PIC Raw ADC Diagnostics (read) PICM:UND1:34-8:P1 LOSS 9.900 -9.900 7 PICM:UND1:34-7:P1_LOSS PIC QADC Registers (read/write) 8 PICM:UND1:34-8:P1 LOSS PIC QADC Thresholds (write) LCLS PIC QADC Losses (read) LCLS 0.75 0.70 0.65 0.60 PIC QADC Doses (read) LCLS 09-06-11.06h 09-06-11.12h 09-06-11.18h 09-07-11.00h 09-09-11 06h 09-09-11 12h 09-07-11 06h 09-07-11 12h 09-07-11 18h 09-08-11 00h 09-08-11 06h 09-08-11 12h 09-08-11 18h 09-09-11 08h Link Node Ctrl/Status + + t + 4+ + + + ...

October 14, 2011 ICALEPCS 2011

13

Machine Protection System

Stanford Synchrotron Radiation Laboratory

System Software – Main GUI

120 Hz 0.0 0.0	N/A	MPS Rate Limits stea (slow estimates, s (slow estimates, no			120 N/	
0.0	Requested Deam Ra N / A Actual Beam Rate		not the same as SCP9 N/A ot the same as SCP9			
	N/A Actual Beam Rate		N/A at the same as SCPb	,	N/.	A
	Actual Beam Rate	s (slow estimates, no	ot the same as SCPh		N/.	A
0.0		s (slow estimates, no				
0.0	0.0					
	0.0		0.0		0.0	
Name	State	Min Rate	Pockels Cell	Mech Shutter	BYKIK	Heater Shutter
S Beam Permit: Mechanical Shutter TDUND Position	Not Permitted	0 Hz 10 Hz		0 Hz	10 Hz	
logic is being masked because ST 1/ST2 Are In."	TD11 Icle and TDIND Icle					
logicis dellig masted decause si 2/312 Me III,		Summary State Histo	iry			-
	Cu	rrently showing states 07/26 00:21:17	1 of 1			Show Live
ssed Faults						
Exp Date	PV					-> Log Book
nmary / Faults / Logic / History / CUD /						

14

- Java-based - Main user Ifc in control room Current rates

Current rate limiting truth tables

Active bypasses

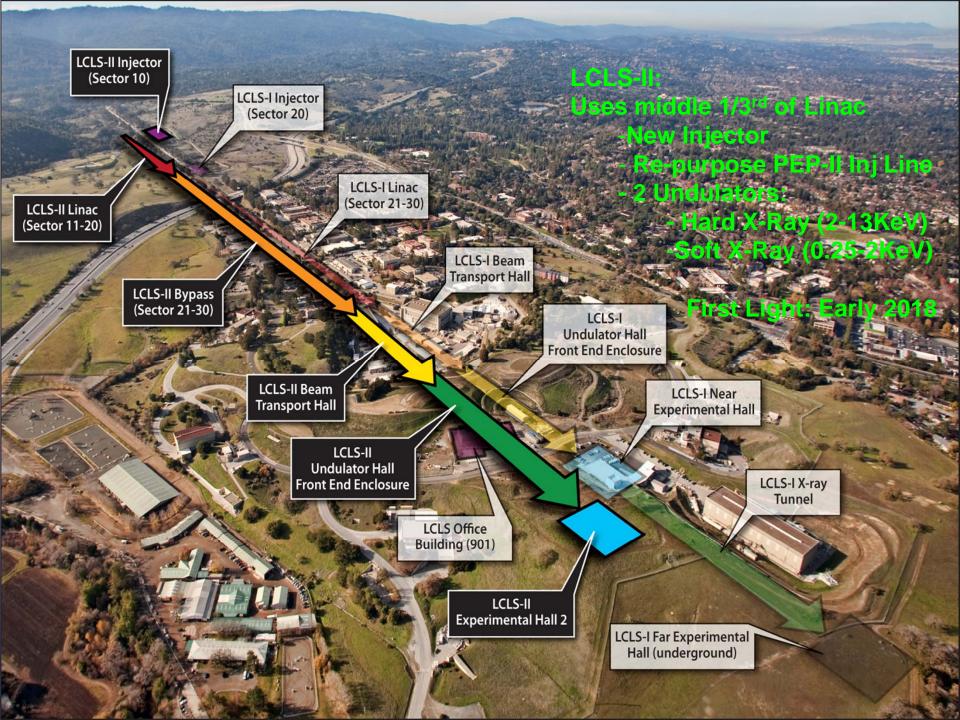
Operational Experience 1

- System Commissioned in 2009
- All inputs transitioned in Summer 2010
- 32 Link-Nodes in system
- ~2100 input devices
- Some items evolved with operational experience (e.g. user interface)

15

Some growing pains

Stanford Synchrotron Radiation Laboratory


Future Directions

- Upgrade of Motherboard
- Sneak BLM data onto MPS Enet Link (for Beam Sync Acq)
- New Link-Node Flavors:
 - Thermocouple Input
 - General-Purpose Analog Input

And....coming soon \rightarrow LCLS-II!

16

Stanford Linear Accelerator Center Stanford Synchrotron Radiation Laboratory

Individuals Involved With The LCLS-I MPS Development

Matt Boyes Mike Browne Sergei Chevtov Dayle Kotturi Patrick Krejcik Stephen Norum Jeff Olsen Anthony Tilghman Chuck Yee (System Eng / SW) (Architecture) (MPS GUI / User Ifc) (Link-Node SW) (Architecture / System Physicist) (Architecture / LP SW / Project Lead) (Link-Node HW & FPGA Design) (Architecture / Legacy Systems) (PCB layout / Chassis design)

Machine Protection System

LCLS-I

LCLS-I

Machine Protection System

Stanford Synchrotron Radiation Laboratory

End of Talk Thank you for your attention!

