Centralised Coordinated Control to Protect the JET ITER-like Wall.

Adam Stephen and JET-EFDA Contributors*

ICALEPCS, 2011.

*See the Appendix of F.Romanelli et al., Proceedings of the 23rd IAEA Fusion Energy Conference 2010, Daejeon, Korea.

- Klaus-Dieter Zastrow (PIW project leader)
- PIW Team
 - Peter Lomas and Plasma Ops Group
 - Paul McCullen JET Level-1.
 - CODAS
 - Diagnostic/Camera systems team.
 - Funded by EFDA & RCUK Energy Programme.
- MARTe

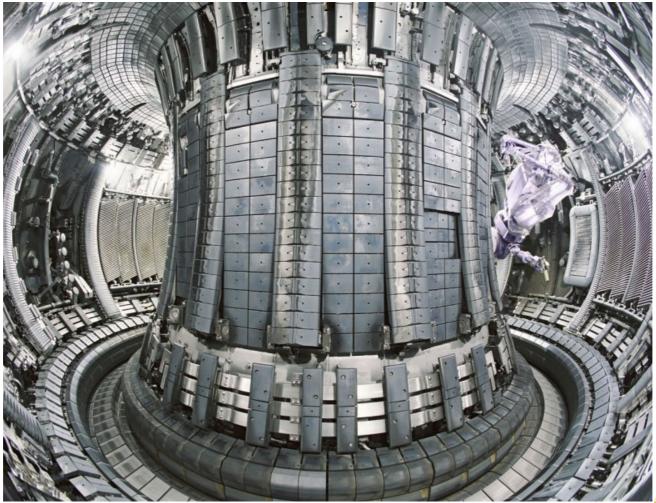
This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

The Joint European Torus (JET)

Plasma physics closest to ITER

Torus radius	3.1 m				
Vacuum vessel	3.96m high x 2.4m wide				
Plasma volume	80 m ³ - 100 m ³				
Plasma current	up to 5 MA in present configuration				
Main confining fiel to 4 Tesla	ld up				
	al acrochilitica :				

Unique technical capabilities :


• Tritium

⇒ Optimise the use of JET in support of ITER by making use of its unique capabilities

JET vessel 2005

14/10/2011

Adam Stephen 4 (23)

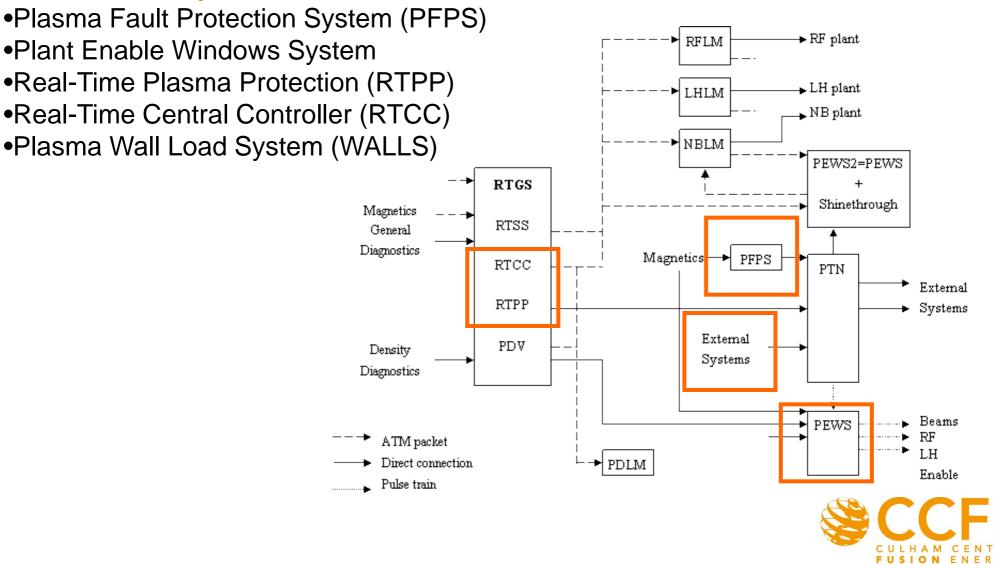
ICALEPCS, Grenoble

EFJEA Material for Plasma Facing Components

Carbon Fibre Composite Tiles (CFC)

- ✓ Low atomic number (minimise radiation losses)
- ✓ High power handling capacity (sublimation 4000K)
- × Absorbs deuterium/tritium fuel.
- Design for ITER : all-metal wall with Beryllium
 ITER-like Wall project for JET : 4000 new tiles

Beryllium Tiles


- ✓ Low atomic number (minimise radiation losses)
- Reduced power handling capacity (melting pt 1560K)
- Reduced retention of fuel

Implications for the JET protection systems...

EFFEA Original Protection Architecture

Detection Systems

Adam Stephen 6 (23)

Ciginal Protection Architecture

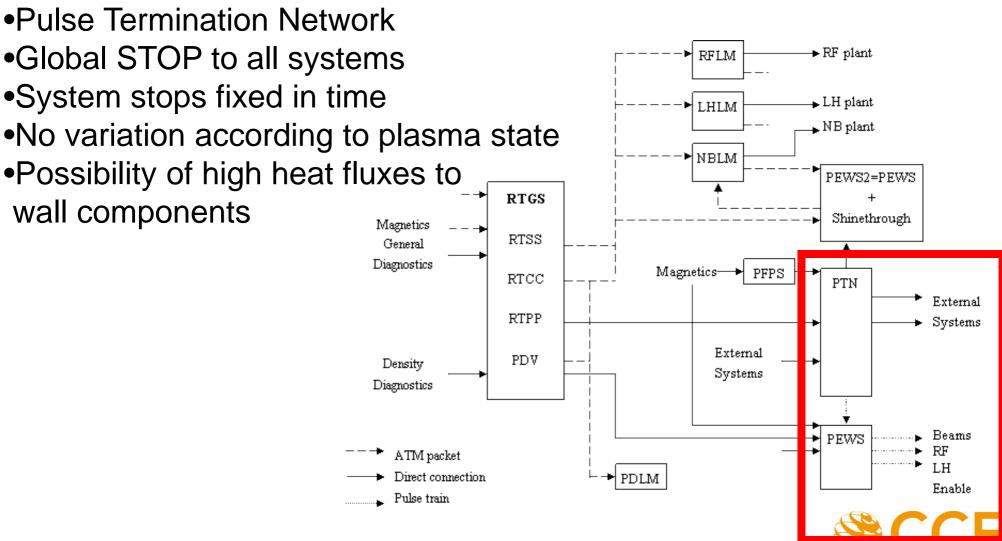
✤ RF plant

🖌 LH plant

🖕 NB plant

RFLM

LHLM

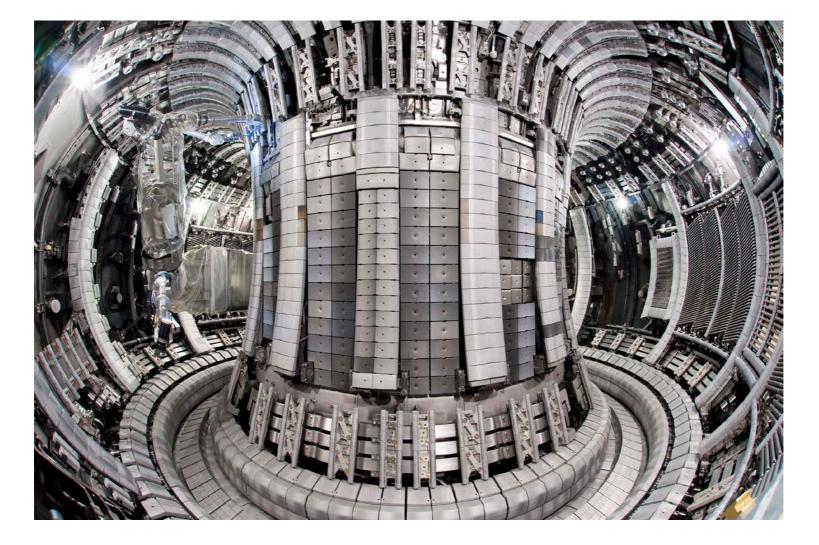

Detection Systems

Plasma Fault Protection System (PFPS)
Plant Enable Windows System
Real-Time Plasma Protection (RTPP)
Real-Time Central Controller (RTCC)

NBLM PEWS2=PEWS RTGS + **Real-time Controllers** Shinethrough Magnetics RTSS (local managers) General Diagnostics •Fuelling/Density (PDLM) Magnetics + PFPS RTCC PTN Additional Heating External RTPP Systems Neutral-Beam (NBLM) External Radio Frequency (RFLM) PDV Density Systems Diagnostics •Lower-Hybrid (LHLM) Plasma Position & Current Control (PPCC) Beams PEWS RF ATM packet LH Direct connection PDLM Enable Pulse train Adam Stephen 7 (23) **ICALEPCS**, Grenoble 14/10/2011

EFFA Original Protection Architecture

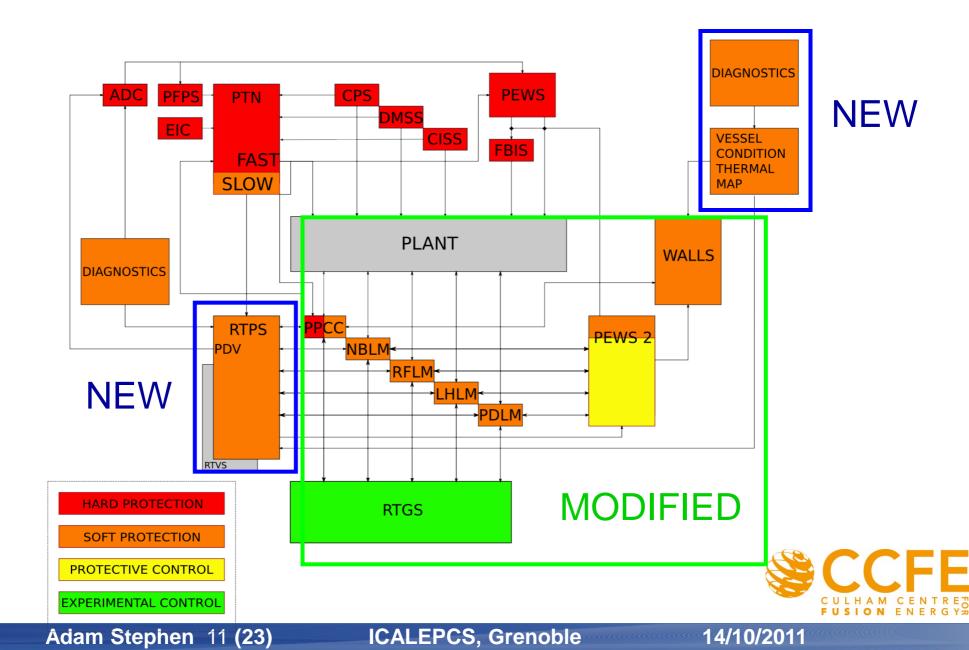
Protection Response



Adam Stephen 8 (23)

____**14/10/201**1

ITER-like Wall 2011


Adam Stephen 9 (23)

ICALEPCS, Grenoble

- New Diagnostic Systems to detect faults
 - Pyrometers, IR Cameras + Real-time image processing (See M.Jouve, WEPMU018, this conference).
 - Vessel Thermal Map (See D.Alves, WEPMN014, this conference)
 - Walls plasma load upgrade
- Update real-time controllers to accept protection override commands, including PPCC (See A.Neto, MOPMU035, this conference)
- Real-Time Protection Sequencer (RTPS) new system to adapt experimental controls to implement hotspot avoidance or else achieve a "soft landing"
- Separation of control (RTCC)/protection(RTPP) diagnostics and related central servers (RTGS E/P)

EFJEA PIW Protection Architecture 2009

Stop Triggers link to Configurable Stop Responses

- Identify classes of protective response:
 - (A) Overheating (local/walls/divertor/global)
 - Reduce the heating, but avoid turning it off.
 - Move/shrink the plasma.
 - Adjust heating/fuelling `as required'.
 - (B) Magnetohydrodynamic (MHD) Instabilities.
 - Change plasma control scenario to avoid disruption
 - (C) Improved programmable 'Fast' and 'Slow' stops
- Link fault alarms to response actions.
- Allow for local protection, plus two escalated responses.

Local Protection

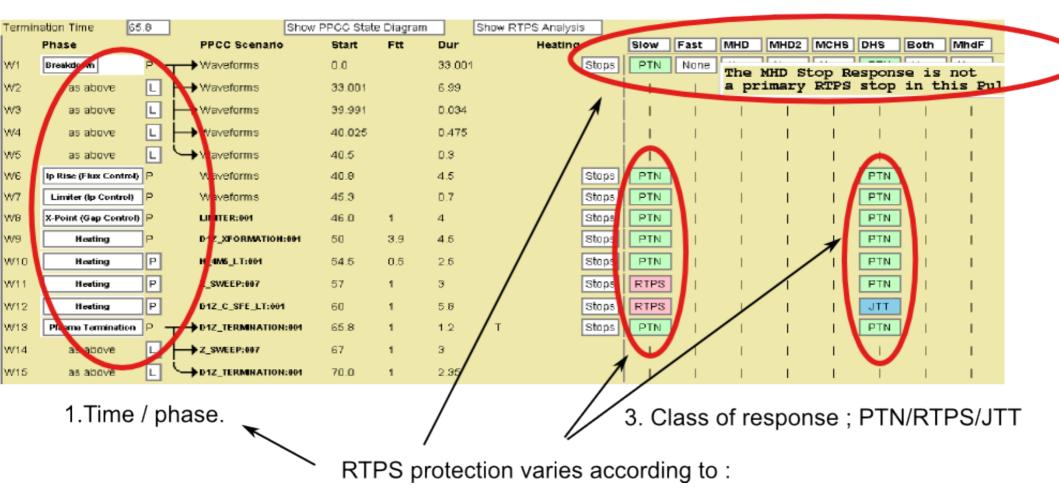
- Localised overheating ?
- Known culprit ? (1 PINI, 1 Antenna, 1 Klystron)

♥ Inhibit & continue

Local managers will rebalance the power demand.

If things get worse, stop safely.

Adam Stephen 13 (23)

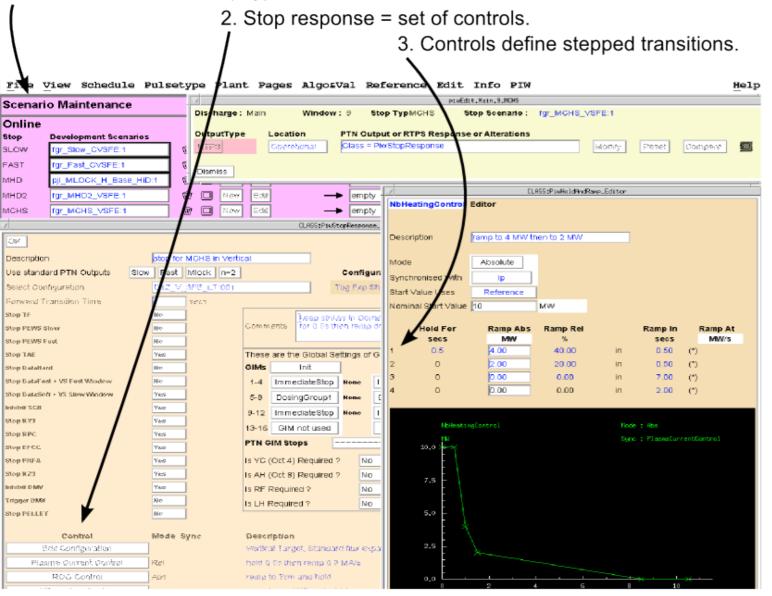

ICALEPCS, Grenoble

2011/10/2011 <u>14/10/2011</u>

Global Stop Response

2. Type of risk

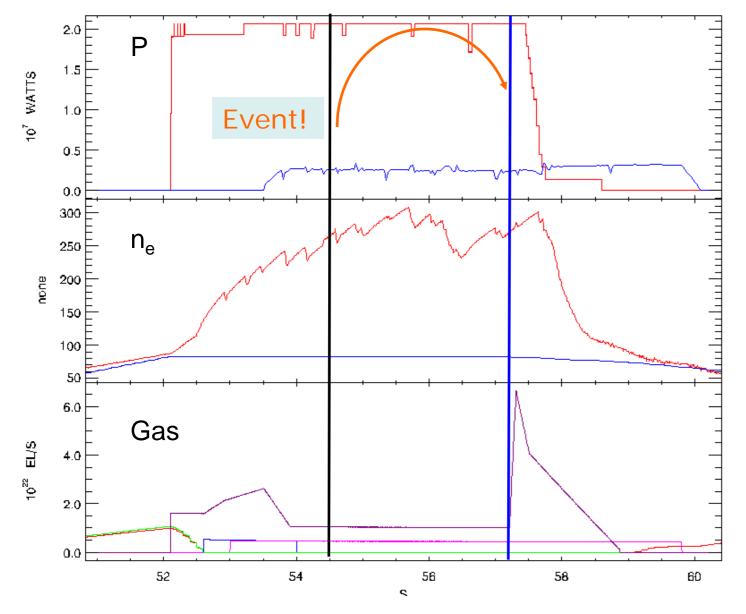
14/10/2011


Adam Stephen 14 (23)

ICALEPCS, Grenoble

Stop Response Editor

1. Scenarios for each stop type.


14/10/2011

Adam Stephen 15 (23)

ICALEPCS, Grenoble

EFJEA

Jump To Termination

Plan: Steady-state 52.5-57.4 Termination: 57.4-62.0 If event occurs any time in steady-state phase jump to 57.4

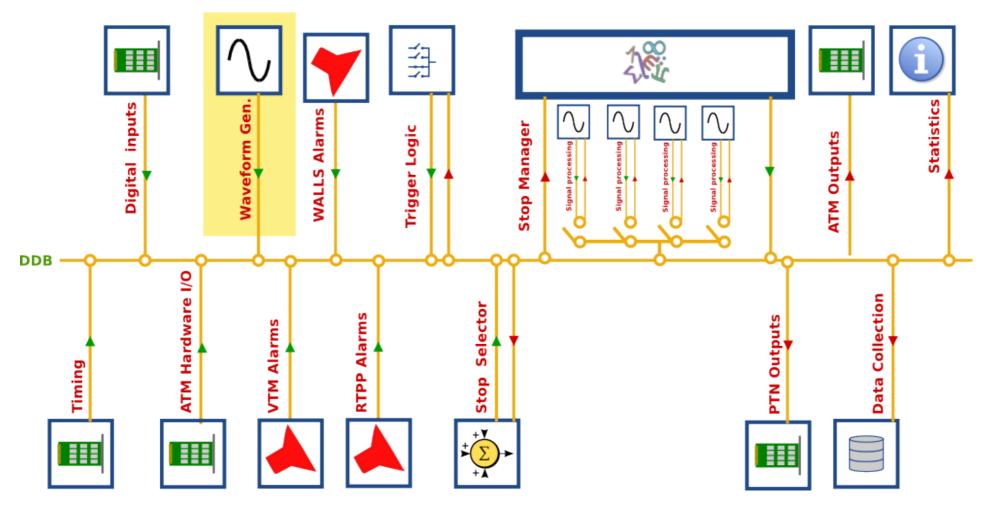
Adam Stephen 16 (23)

Some stops may `accelerate', others continue to completion.

Table Version =	3.00								
	Slow	Fast	MHD	MHD2	MCHS	DHS	MC+DHS	MhdFst	JTT
	^	^	^	^	^	^	^	^	^
[Slow->Slow	Slow->Fast	Slow4>MHD	Slow->MHD2	Slow->MCHS	Slow4>DHS	Slow4>MC+DHS	Slow⊬>MhdFst	Slow->JTT
Slow >	Ignore	RTPS	RTPS	RTPS	RTPS	RTPS	RTPS	Ignore	Ignore
		FAST	FAST	FAST	MCHS	DHS	MC+DHS		
	Fast->Slow	Fast->Fast	Fast-≽MHD	Fast->MHD2	Fast->MCHS	Fast->DHS	Fast->MC+DHS	Fast->MhdFst	Fast->JTT
Fast >	Ignore	Ignore	PTN	PTN	PTN	PTN	PTN	Ignore	Ignore
	MHD->Slow	MHD->Fast	Fast MHD->MHD	Fast MHD->MHD2	Fast MHD->MCHS	Fast MHD->DHS	Fast MHD->MC+DHS	MHD->MhdFst	MHD->JTT
MHD >	Ignore	Ignore	Ignore	Ignore	RTPS	RTPS	RTPS	Ignore	Ignore
IVINU >	ignore	ignore	ignore	ignore	MhdFst	MhdFst	MhdFst	Ignore	Ignore
	MHD2->Slow	MHD2->Fast	MHD2->MHD	MHD2->MHD2	MHD2->MCHS	MHD2->DHS	MHD2->MC+DHS	MHD2->MhdFst	MHD2->JTT
MHD2 >	Ignore	Ignore	RTPS	Ignore	RTPS	RTPS	RTPS	Ignore	Ignore
			MHD		MCHS	DHS	MC+DHS		
	MCHS->Slow	MCHS->Fast	MCHS->MHD	MCHS->MHD2	MCHS->MCHS	MCHS->DHS	MCHS->MC+DHS	MCHS->MhdFst	MCHS->JTT
MCHS >	Ignore	Ignore	RTPS	Ignore	Ignore	RTPS	RTPS	Ignore	Ignore
			MhdFst			MC+DHS	MC+DHS		
DUO.	DHS->Slow Ignore	DHS->Fast Ignore	DHS->MHD RTPS	DHS->MHD2 Ignore	DHS->MCHS RTPS	DHS->DHS Ignore	DHS->MC+DHS RTPS	DHS->MhdFst Ignore	DHS->JTT Ignore
DHS >	ignore	ignore	MhdFst	ignore	MC+DHS	ignore	MC+DHS	ignore	ignore
	MC+DHS->Slow	MC+DHS->Fast	MC+DHS->MHD	MC+DHS->MHD2	MC+DHS->MCHS	MC+DHS->DHS	MC+DHS->MC+DHS	MC+DHS->MhdFst	MC+DHS->JTT
MC+DHS >	Ignore	Ignore	RTPS	Ignore	Ignore	Ignore	Ignore	Ignore	Ignore
ine brie	_	-	MhdFst	-	-	_	-	-	_
	MhdFst->Slow	MhdFst-⊳Fast	MhdFst->MHD	MhdFst->MHD2	MhdFst->MCHS	MhdFst->DHS	MhdFst->MC+DHS	MhdFst->MhdFst	MhdFst->JTT
MhdFst >	Ignore	Ignore	Ignore	Ignore	Ignore	Ignore	Ignore	Ignore	Ignore
	177 01								
1778	JTT->Slow Ignore	JTT->Fast Ignore	JTT-≻MHD RTPS	JTT->MHD2 Ignore	JTT->MCHS RTPS	JTT-≫DHS RTPS	JTT->MC+DHS RTPS	JTT->MhdFst Iqnore	JTT->JTT
JTT >	ignore	ignore	MHD	ignore	MCHS	DHS	MC+DHS	ignore	Ignore
			MITD		1010113	0110	INIO FDITIS		

14/10/2011

Adam Stephen 17 (23)

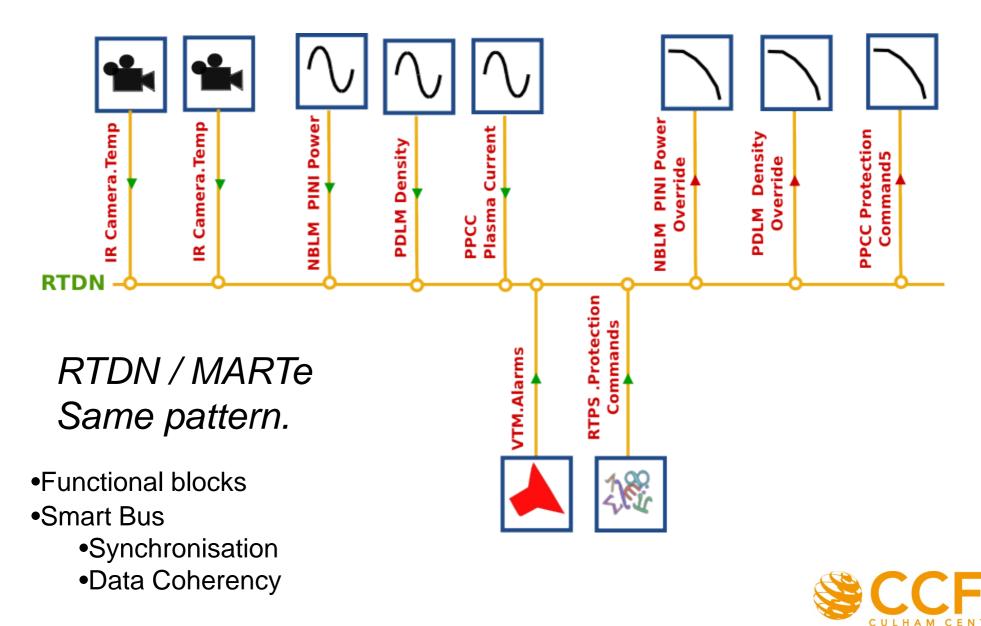

See A. Neto, THDAULT06, this conference.

- 1. Reusable modules for standard control application (state machine, data collection). Highly data driven application structure. Sophisticated object oriented/component based framework with 10+ years of control system experience.
- 2. Proven real-time performance.
- 3. Portable and highly modular : run unit tests on Linux, pluggable simulated inputs, rapidly evolve the design.
- 4. Strong interface to Level-1 MMI. Decouple compiled code from configuration programming. Strong authorisation and validation checks on changes. Highly visible parameters.
- 5. Application configuration \rightarrow Documentation
- 6. Growing community of MARTe experts a very knowledgeable and helpful group.

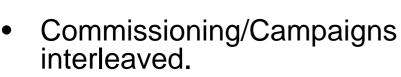
RTPS Block Diagram

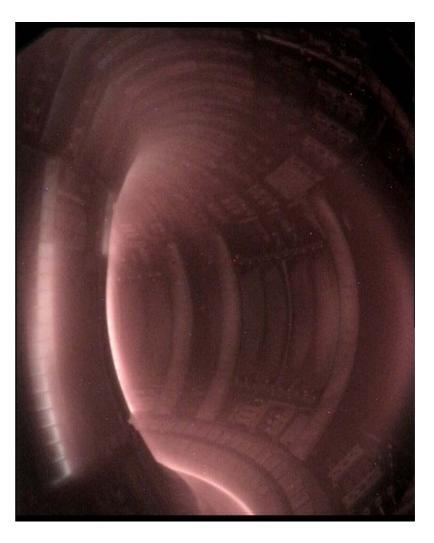
2ms cycle

CCFE CULHAM CENTRES FUSION ENERGYS



- VME system
- MVME5500 1GHz PowerPC 512MB RAM
- Digital IO
- Watchdog monitoring via pulse train
- Ethernet for slow control/data collection
- Real-time communication:
 - ATM segregrated network for RT control
 - Low latency, high reliability
 - Fixed connections (permanent virtual circuits)
 - Fixed size datagrams with controlled version ID.


RTDN


Adam Stephen 21 (23)

ICALEPCS, Grenoble

PIW Commissioning

- Logic tests with dry runs
- Ohmic plasmas
- Plasma light used to simulate high temperatures.
- Vessel Thermal Map alarms checked.
- RTPS stop responses demonstrated.
- Jump To Termination in plasma control JPN 80500.

Adam Stephen 22 (23)

ICALEPCS, Grenoble

- Full commissioning and calibration of camera systems.
- Integrate control of heating systems.
- Expanded local protection.
- 'Alternative control' ?

