Development Of The Diamond Light Source PSS In Conformance With EN 61508

- Presented by Martin Wilson
- Principal Personnel Safety Engineer
- Diamond Light Source

What is this talk about?

- What is Diamond Light Source?
- Personnel Safety System organisation
- The need for a database
- Quantization
- Calculations
- Report generation

PSS Organisation

Design process

Database

STUFF

Safety requirements

Safety model

Verification

Validation

Hazard Identification

- Identify hazards
- Estimate frequency
- Estimate consequence
- Identify safety measures
- Control measures

HAZID Form

F	Ref	Hazard	Consequences	Initiating Event	Frequency of Opportuni ty	Non-PSS Safeguards	PSS Safety Functions
1	I.1a	Exposure to radiation in Linac Vault	Possibility of fatality	Trained person attempts to enter vault with Linac operating	1 per day	 (i) Trained personnel (ii) Card access (iii) Safety Operating Procedures prevent entry while Linac operating. (iv) Use of radiation monitors 	(i) Annunciator outside door (ii) Key exchange interlock (iii) Door switches stop Linac (iv) Coloured light system inside
1	I.1b	Exposure to radiation in Linac Vault	Possibility of fatality	Visitor attempts to enter vault with Linac operating	1 per week	(i) Supervision by trained guide(ii) Limited group size	(i) Annunciator outside door (ii) Key exchange interlock (iii) Door switches stop Linac (iv) Coloured light system inside
1	I.2a	Exposure to radiation in Linac Vault	Possibility of fatality	Linac started with trained person in vault	1 per day	(i) Vault searched before start-up (two trained person search)(ii) Use of radiation monitors (mitigation)	(i) Key exchange interlock (ii) Open door inhibits start-up (iii) Search confirmation buttons (iv) Coloured light system inside (v) Warning
							announcement s (vi) Beam Off buttons.

Database

Hazards

Opportunity

Consequence

Safeguards

Control measures

Convert from Qualitative to Quantitative

Hazards

hazard_con		
Exposure to White Beam - Probable fatality (100%)	1	
Exposure to Pink beam - Probable fatality	0.8	
Exposure to Monochromatic beam - Possible fatality, serious injury	0.01	
Exposure to soft beam - possible blindness, cataracts		
Overexposure	0.001	
Probable fatality (100%)	1	
Possible fatality (50%)	0.5	
Possible fatality (20%)	0.2	
Serious injury	0.2	
Minor injury	0.01	
Trap hazard - Death or serious injury (minimise inertia by design)	0.8	
Trap hazard - Serious injury	0.2	
Asphyxiation	1	
Breathing difficulties, irritation	0.001	
RF burns, severe injury, cataracts	0.01	

Convert from Qualitative to Quantitative

Opportunity

hazard_op	
once every 20mins	26280
25 per day	9125
once per day	365
once per week	52
once per month	12
once every 6 months	2
once per year	1
1 in 5 years	0.2
1 in 10 years	0.1
Not in the life of the machine	0.01

Convert from Qualitative to Quantitative

Safeguards

HAZID validation

HAZID report

Hazards Hazards

Opportunity Copportunity

Consequence Consequence

Safeguards Safeguards

Control measures Control measures

HAZID validation

RUBBISH
Hazards √
Opportunity √
Consequence √
Safeguards √
Control measures √

RUBBISH

Comparison report 1

Comparison report 2

Risk reduction

Figure A.2 - Risk and safety integrity concepts

Door locked interlock

Search confirmation

Blue lights

•BOB

Warning tones

Training

•Card Access

Database reports – Safety margin and SIL

Hazards

Opportunity

Consequence

Safeguards

Control measures

Safety Margin report

SIL Requirements report

Shortcomings and benefits of calculation

Independence of safety measures

ICALEPCS 2011 14/10/2011 MCW

Shortcomings and benefits of calculation

- Independence of safety measures
- Common mode effects
- Human Factors

Benefits

- Quick
- Easy
- Good indication
- Reduced number of passes

Refining risk

- Try to reduce the severity
- Try to reduce the frequency of opportunity
- Increase the non E/E/PE safety measures
- Increase the E/E/PE safety measures

Database reports- Safety requirements

Sort the hazard data by area to generate a safety requirements report with SIL ratings

Safety
Requirements
Report
Safety
Requirements
Specification

Functional performance test

For every Safety requirement there will be a functional performance test

Functional tests reference

Functional tests/Safety requirements cross reference Report

Control measures

Database Reports- Logic

Sort the hazard data by area and control measure to generate a logic report for cross checking design

Logic design check

Logic report

Documentation

 Each system has a suite of documents, some of which are common, recorded and linked in the database

Documentation Report

Conclusions

- The database strengthens the EN 61508 process in DLS
- It generates useful reports and cross references
- Calculations do not replace more formal assessments
- Shouldn't be used blindly
- A useful accompaniment to normal process

Questions?

- Martin Wilson
- Principal Personnel Safety Engineer
- Diamond Light Source
- martin.wilson@diamond.ac.uk
- +44 (0)1235-778049

