
Title Slide

“High-Integrity Software, Computation and
the Scientific Method"

Les Hatton

Professor of Forensic Software Engineering
CISM, Kingston University
L.Hatton@kingston.ac.uk

Version 1.1: 29/Sep/2011

ICALEPCS, Grenoble, 9-14 Oct, 2011.
.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

High-Integrity Software

High-Integrity Software and …
The scientific method
Defect
Programming languages
Process
FAQs and ways forward

Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… the Scientific Method

Popperian deniability …
Truth cannot be verified by scientific testing, it can only
be falsified.
Falsification requires quantification of experimental error.
This has been at the heart of scientific progress.
This process is NOT generally followed in scientific (or
indeed any other kind of) computation.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… defect

On quantification
Computer scientists have researched the average
density of defect in code extensively
Where we have been much less successful is in
quantifying the effects of such defect on
numerical results.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… defect

On quantification of density
A “low defect” piece of software will exhibit less
than 1 defect per thousand executable lines of
source code in its entire lifetime.
Average software is in the range 1-10.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… defect.
A software quality scale based on

defect density
Defects/KXLOC

0.1 NASA Shuttle software HAL (0.1)

Linux kernel (0.14)

Several commercial C systems (0.15-0.4)
The best 5% of systems
approximately

Commercial Tcl-Tk (0.9)
1.0

NAG Fortran (2.1)

Medical app C++ (5.1)

Ada comms (7) Sources Fiedler (1989), Compton (1990), Basili
(1996), Hatton (2005,2007,2008)NASA Fortran (8)

10.0

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… defect
some early thoughts

On quantification of the effect of defect, by 2010 I was reasonably
convinced that:
N-version experiments are exceedingly valuable at highlighting
differences, (for whatever reason), and effective at reducing
those differences. (1994)
Scientific software is littered with statically detectable faults
which fail with a certain frequency (1997)
The language does not seem to make much difference. (1999-)
Defects appear to be fundamentally statistical rather than
predictive, (2005-8)
Software systems exhibit implementation INdependent
behaviour (2007-10).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… defect
Quantification of effects by N-

version (1994)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… defect
Relationship to static complexity ?

There is little evidence that complexity measures
such as the cyclomatic complexity v(G) are of any
use at all in predicting defects

Defects

Cyclomatic number v(G)NAG Fortran library over 25 years
(Hopkins and Hatton (2008))

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… defect
Is there anything unusual about

‘zero’ defect ?

PCA and endless
rummaging
suggest not. This
may undermine
root-cause
analysis.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming language

On static defects
Modern programming languages are littered with many
types of statically detectable defect, (for example use of
uninitialised variables).
These typically occur around 5-10 per 1000 lines of
executable code and fail at an unacceptably high rate for
high-integrity systems. They must be removed by tools
plus inspections.

Languages are astonishingly similar in their
information properties …

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming language

In any software system, conservation of size and
information (i.e. choice) is overwhelmingly likely to
produce a power-law alphabet distribution
independently of programming language or
application area. Hatton (2009).

() β−
ii ap ~

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming languages

However for programming languages, ai is made up of
fixed and programmer-specified tokens

)(iaaa vfi +=

Variable tokens, (id names
and constants)

Fixed tokens of a language, {
} [] ; while …

And for small components, ai is dominated by af

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming languages

So we are looking for the following signature on a
log-log plot

log pi

log i

() β−
ii ap ~

() β−
fa

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming languages
Some results

AdaC++ C Java

Fortran C Numerical 34 million lines of Ada, C, C++,
Fortran, Java, Tcl in 75 systems.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming languages
Is power-law behaviour

persistent ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming languages
Defect clustering in the NAG Fortran

library (over 25 years)

Defects components XLOC
0 2865 179947

1 530 47669

2 129 14963

3 82 13220

4 31 5084

5 10 1195

6 4 1153

7 3 1025

> 7 5 1867

A simple model of
defects leads to the
prediction that defects
will cluster

Zero-defect is like
winning the lottery.
There is no systematic
way of achieving it.

… programming languages

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Clustering can be
exploited:
Conditional
probability of
finding defects
increases initially*

* See, Hopkins and Hatton (2008), http://www.leshatton.org/NAG01_01-08.html

http://www.leshatton.org/NAG01_01-08.html

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… process

On process
Defined software processes including inspections,
defect tracking and test planning are highly
beneficial but beware of …
Box-ticking. Blind bureaucracy comes at a
terrible price in safety-critical systems …

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… process and box-ticking:
Nimrod explosion, Afghanistan

2006

“The Nimrod Safety Case was a lamentable job from
start to finish. It was riddled with errors, it missed key
dangers, its production is a story of incompetence,
complacency and cynicism.”

Charles Haddon-Cave QC, Chairman of the enquiry on
behalf of the House of Commons.

http://www.official-documents.gov.uk/document/hc0809/hc10/1025/1025.pdf

http://www.official-documents.gov.uk/document/hc0809/hc10/1025/1025.pdf

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… FAQs and ways forward

Some questions in High-Integrity development
Risk versus ingenuity
Knowledge transfer and Education
How is design approached ?
How are technological leaps tackled ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

High-Integrity Software

High-Integrity Software and …
The scientific method
Defect
Programming languages
Process
FAQs and ways forward

Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Conclusions

High-Integrity software is as much about education as it
is about technology
Computing science is still struggling with defect
quantification and damage limitation
Scientific computation is not yet scientific
For all kinds of reason, open source is of vital
importance both for defect reduction and scientific
reproducibility. There is great hope here and much to be
excited about.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

References

My writing site:-
http://www.leshatton.org/

Specifically,
http://www.leshatton.org/ICALEPSC_2011.html

Thanks for your attention.

http://www.leshatton.org/
http://www.leshatton.org/ICALEPSC_2011.html

	Title Slide
	High-Integrity Software
	… the Scientific Method
	… defect
	… defect
	… defect.A software quality scale based on defect density
	… defectsome early thoughts
	… defectQuantification of effects by N-version (1994)
	… defectRelationship to static complexity ?
	… defectIs there anything unusual about ‘zero’ defect ?
	… programming language
	… programming language
	… programming languages
	… programming languages
	… programming languagesSome results
	… programming languagesIs power-law behaviour persistent ?
	… programming languagesDefect clustering in the NAG Fortran library (over 25 years)
	… programming languages
	… process
	… FAQs and ways forward
	High-Integrity Software
	Conclusions
	References

