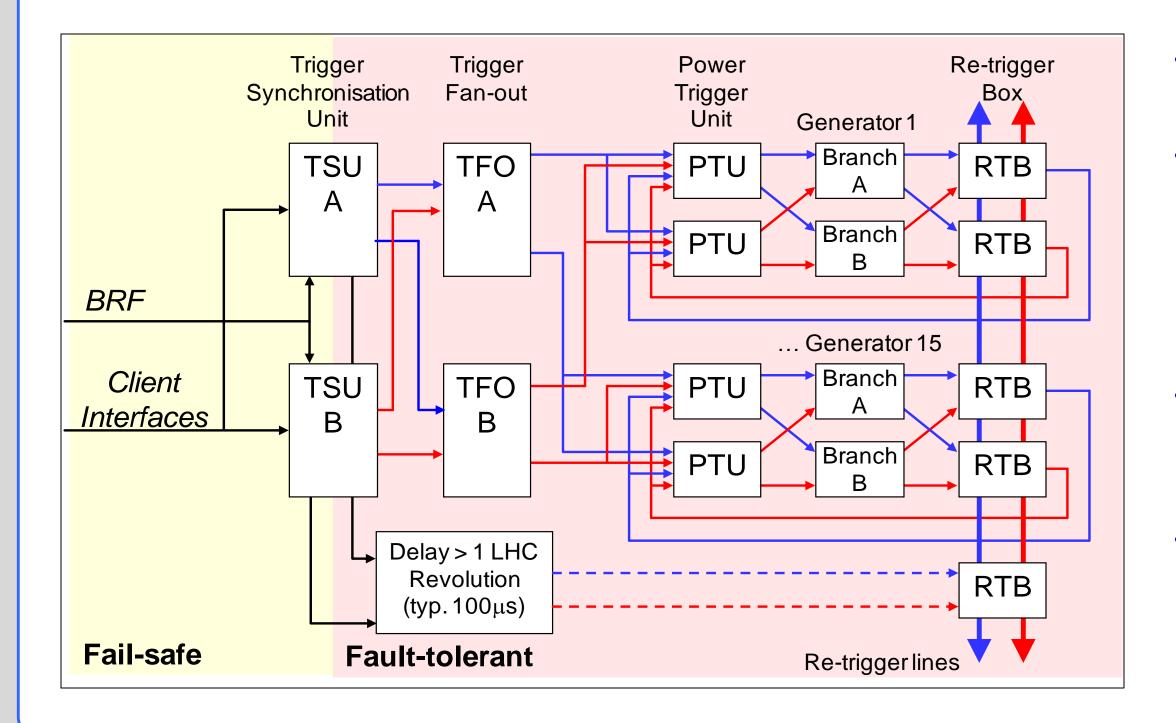


FIRST OPERATIONAL EXPERIENCE WITH THE LHC BEAM DUMP TRIGGER SYNCHRONISATION UNIT


A. Antoine, C. Boucly, N. Magnin, P. Juteau, N. Voumard, CERN, Geneva, Switzerland

Abstract

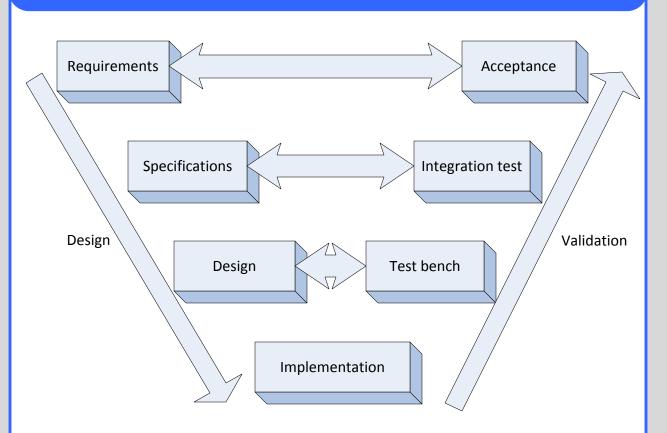
Two LHC Beam Dumping Systems (LBDS) remove the counter-rotating beams safely from the collider. Dump requests can come from 3 different sources: the machine protection system, the machine timing system or the LBDS itself. These dump requests are synchronized with the 3 µs beam abort gap in a fail-safe redundant Trigger Synchronization Unit (TSU) based on a Digital Phase Locked Loop (DPLL), locked onto the LHC beam revolution frequency with a maximum phase error of 40 ns. The TSU synchronized trigger pulses outputs are then distributed to the high voltage generators of the beam dump kickers through a redundant fault-tolerant trigger distribution system. This paper describes the outcome of the external review and the new tools designed to increase diagnosis and monitoring functionalities, and, a more automated validation Process of the hardware and embedded firmware. Additionally, the lessons learnt on the project life cycle for the design of mission critical electronic modules is presented.

Trigger synchronisation & distribution system (TSDS)

• LHC Beam dump triggering system entirely redundant.

• Trigger synchronisation units (TSU) used a discreet phase locked loop (DPLL) to be continuously locked on the beam revolution frequency (BRF) and produce dump trigger

TSU


pulse trains synchronised with the beam abort gap.

• The firing of the beam dump is initiated when a dump request from any client is sent to the TSU.

• When a dump request is recorded, the TSUs synchronous output triggers are enabled to allow the DPLL synchronous pulse train output to fire the trigger fan out (TFO) units and to initiate the beam dump trigger chain.

Trigger synchronisation units review

V-Cycle

Project separates in two teams with the *same goal* but *a different function*:

Requirements review

A high level hierarchy that identifies all hardware and software modules with their corresponding functionalities has been created and cross-checked through a *validation matrix* with the list of all functional requirements

Design review

- A low level hierarchy has been created and a *requirement coverage matrix* issued to synthesize the results with a basic OK/NOK status result for every requirement associated with a criticality level
- •Hardware and software review

- All requirements are taken into acount
- All requirements are covered by at least one sub-module
- Links between modules are coherent
- Hardware architecture is correct
- Architecture sometime too complex for the required functionalities
- 11 requirements out of 200 identified as not properly implemented
- Certain internal failures generate async. trigger on only one TSU
- Possibility to generate dump triggers during arming sequences
- Dump trigger can occur at power-on due to undefined flip-flop state
- state machine is under uncontrolled conditions in LOCAL mode
- Great performance under normal/internal failure conditions

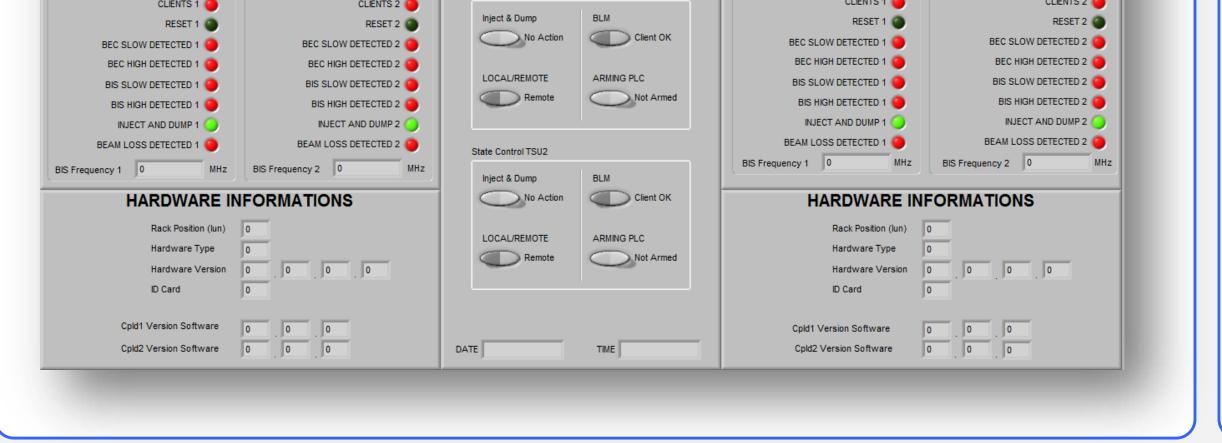
An *in-depth analysis* of the TSU electronic circuit has been completely checked with respect to modern state-of-the-art hardware design techniques and its embedded VHDL software have been fully simulated and their reactions to incorrect operational conditions analysed in detail

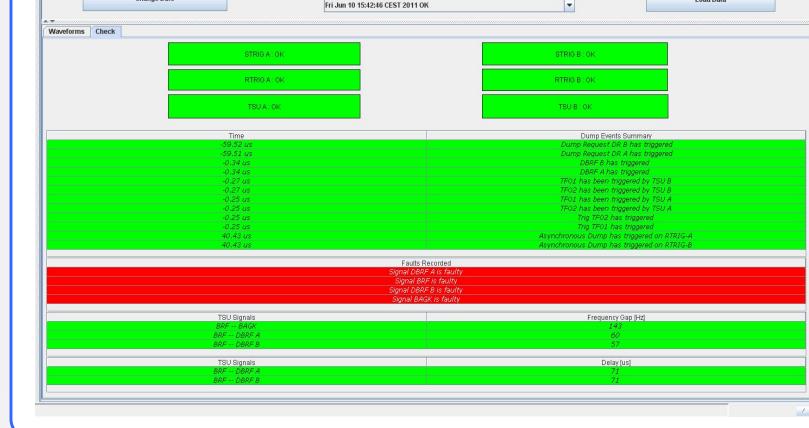
- VHDL simulations passed
- No protection of powering circuits against internal failure
- Under-sized or inappropriate type of capacitors
- Missing protection on board interfaces
- Homogenization of circuit family and circuit types
- To design the final product (Left)
- To design the test bench (Right)
- Minimize design common mode
- errors
- Improve reliability and robustness of the final products

New tools

TSU automated test bench

TSU hardware and emb functionalities va before operational (Base on NI-PXI 8184 emb running LabVIEW I	alidation deployment bedded controller	Emulation of all input signals		Analysis of output signal
FREEZE TSU 1	TSU CONTROL TE	LIVE	TS	FREEZE
STATE CONTROL PLC ARMING DISARMED TSU STATUS DISARMED BRF DETECTED DUMP SYNCHRO READY DUMP SYNCHRO READY DUMP STATUS DISABLED SYNCHRO DUMP NOT REQUEST ASYNCHRO FAULT OK SYNCHRO FAULT OK	kHz BRF Cycle Sync $(-)$ 12.37 s us BIS1 Cycle Sync $(-)$ 50.00 BIS2 Cycle Sync $(-)$ 50.00	1z STATE CONT PLC ARI 1z TSU STA 1z BRF DETEC DUMP SYNC DUMP SYNC DUMP SYNC DUMP STA SYNCHRO D % Cycle ASYNCHRO FA DUMP CLIE % Cycle INTERNAL FA	AING O DISARMED TUS O DISARMED HRO O DONE HRO DONE HRO DISABLED UMP NOT REQUEST AULT O OK	BRF 7.5 10 5 12.5 2.5 15 BRF Frequency 0 kHz BRF Period 0 us Dump Trigger 0 BAGK Trigger 0
BRF FAULT		BRE F	AULT 🧕 FAULT	


TSU IPOC (TSU internal post operational check)



Based on a PCI 32 bit 125 MS/s digital I/O module from SPECTRUM with acquisition software running on a LINUX front-end

Monitoring function developed to get a better understanding of the entire LBDS triggering process

🛛 🔻 RBA:	aantoine	🖓 ReArm 🧹 Warning Ack	🔉 Reset 🖉 Manual Trigger 🔵 Stop 📝	Calibrate Save all waveforms			
Vaveforms	Check Logging Info	<i>₽</i>					
	Change Date		Timestamps found : Fri Jun 10 15:42:46 CEST 2011 OK		•	Load Data	
Waveform	S Check						
DBRF A							
DBRF B			 				
BRF							
SBDT A1							
SBDT A2			<u> </u>				
SBDT B1							
SBDT B2							
rig TFO1							
rig TFO2 _							
RTRIG-A							
RTRIG-B DR A							
DRA_ DRB							
BAGK							

Logic analyser function to perform after each dump a check of the correct sequence of triggering and re-triggering pulses, the correct delays between the different signals, the sanity of the signals, the correct frequency and phase offset between distributed and internally generated re-phased beam revolution frequency

Summary

The first operational experience and the external review led to the creation of three new functions. An automated test bench, a TSU IPOC monitoring function with an on-line graphical interface and a TSU IPOC logic analyser. Additionally, the external review has given us a new methodology in project design improving the reliability of final products, the V cycle. The last release of the TSU units, taking into account all critical and major design errors highlighted by the external review, is now ready for deployment after a successful completion of the automated test process. A new hardware design release will be started in 2012 to improve the robustness of the interfaces.