
10 - 14 October 2011

Automated Testing of OPC Servers
Author : B. Farnham

JACOW ID WEPMS006

Author : B. Farnham

OPC at CERN
OPC is used at CERN to provide a standard software interface for
the control and monitoring of various devices front end devices
including industrial power supplies, VME crates, PLCs and ELMBs.

Some OPC servers are custom implementations driving custom
devices such as the ELMB, other OPC servers are provided
external vendors.

Automated testing
Regression testing is a boring job for a human.
Verifying critical functionality across multiple
versions entails checking that the same input
sequence produces the same output sequence.
Time after time after time. An OPC client can be
made to programmatically issue a defined
sequence of commands to an OPC server. The
effect of these commands can be observed via
an OPC client inspecting the correct OPC
items exposed by the server. This is the basis of

the application, scripts direct a machine to issue OPC commands
to an OPC Server and asserts the observable results.

An OPC testing DSL
Domain Specific Languages are small languages,
specially tailored to suit a given domain. OPC test
scripts are written in a DSL specially created for
OPC testing. The language consists of nouns (e.g.
groups and items) and verbs (e.g. writes and
assertions) to more clearly express and

communicate the scripts intent. The basic idea is that anyone with
domain knowledge (i.e. OPC plus the equipment it controls) can
read and understand what the script does in terms of instructing
the OPC Server to drive the device and what the script expects to
happen as a result.

Regression testing and OPC
The experiments have working systems. Any change carries the
risk of inadvertently degrading these systems.

Regression testing aims to minimize this problem by 'capturing''
critical behaviour in tests and running these against new versions
OPC is an industry standard for control and monitoring. It provides
a common vocabulary for testing critical behaviour that is the same
for every vendor.

Runnable bug reports
A common problem in complex systems is the
non-repeatable bug: Users describe a bug to the vendor
who tries, and fails, to recreate it in a debug rig based on
their interpretation of the description.
Using the Automated Tester, bugs can be described in a test
script - with failing assertions highlighting errant behaviour.
The same script is sent to the vendor who runs it against
their equipment in a debug rig. No interpretation is required.
Often scripts include a pre-test setup section. This section
makes assertions about the environment (e.g equipment and
state) to ensure that the script is being executed under
appropriate conditions.

Pass or fail: Assertions
Assertions are the means by which tests are deemed to have
either passed or failed. A test script contains a series of
commands in order to have an effect on the system, assertions in
the script ascertain whether the effects were correct or otherwise.

The DSL currently supports 2 assertion
types: Synchronous assertions are
immediately evaluated to return a pass or
a fail; Asynchronous assertions are
evaluated over a specified period, if the

condition is met within that period, the assertion passes, otherwise
it fails.

The Automated tester: An exploded view

The script currently
running (read only).

The output of user
specified log
commands, updated
as the script executes.

The results tree.Nodes
are dynamically added
to the tree as
assertions are made in
the script. The tree
updates the node colour
as assertions pass, fail
or (in the case of
asynchronous
assertions) are
undetermined

The OPC (OPC-DA) client is encapsulated in a windows DLL, written in C++..
The script execution layer on a JVM passes OPC commands (create group, read/write item
values etc) over the interface exposed by the DLL through Java Native Access (JNA).

Communications between the OPC client embedded in the OPC Automated Tester and the OPC
Server is pure OPC. The Automated tester implementation is dependent only on the OPC standard,
not the device or OPC Server under test.

logInfo('script started...')
init('', 'CAEN.HVOPCServer')

group('setup.software.and.hardware.chain').with
{
 logInfo('making assertions about the system')
 item('CAENITCO3.ConnStatus').assertEquals('mainframe must Ok to receive connections', 'Ok')
 item('CAENITCO3.OPCServerEventMode').assertFalse('mainframe must not run in event mode')

 logInfo('logging some information about the system component descriptions')
 items('CAENITCO3.**.Description').each {logInfo("item [${it.path}] has description [${it.syncValue}]")}
}

group('set.initial.device.state').with
{
 logInfo('turning every channel of every board off (and asserting the channel is off).')
 items('CAENITCO3.Board*.Chan*.Pw').each
 {
 it.syncValue = 'false'
 sleep(200)
 it.assertFalse("channel corresponding to item [${it.path}] should be switched off")
 }

 items('CAENITCO3.Board*.Chan*.Status').each{it.assertEquals("channel [${it.path}] should be off", '0')}
}

group('main.body').with
{
 logInfo('setting asynchronous criteria for channel on/off status')
 items('CAENITCO3.Board*.Chan*.Status').each {it.assertAsyncEquals("channel status to stabilize in 10s", 10000, '1')}

 logInfo('turning all channels on now')
 items('CAENITCO3.Board*.Chan*.Pw').each {it.asyncValue = 'true'}
}

group('clean.up').with
{
 sleep(11000) // wait until async asserts complete before cleaning up
 logInfo('cleaning up, turning all channels off')
 items('CAENITCO3.Board*.Chan*.Pw').each{it.syncValue = 'false'}
}

logInfo('end of script')

An example test script used for testing a CAEN power supply

Note scripts are device specific. A scripts view of the device under test is
through its OPC Server which publishes an address space specialised
to the device.

Simple user controls including option to output
script's assertion results in junit style XML report

Current use cases
A regression test library is under construction for industrial power supply (and VME
crate) vendors CAEN, ISEG and Wiener. In the case of one vendor these regression
test scripts have already been put to use to test new OPC Server versions and
power supply mainframe firmware.
Another vendor's OPC Server is suffering from a memory leak, multiple scripts have
been written, each focusing on a different type of OPC interaction, e.g. item reads,
item writes or group creation etc, and run in conjunction with the Windows perfmon
utility to check which interactions cause the highest memory consumption. The
scripts have been sent to the vendor to aid diagnosis.
A proposed case (under construction) is to incorporate regression test scripts into
CERN's release and verification process for the firmware of individual power supply
modules.

Future work
Wider coverage for regression tests. Currently only a small fraction of functionality is
covered by scripts. The coverage should be increased over time to reduce the areas in
which regressions could go unnoticed.
A batch mode for running and reporting on a batch of tests without human intervention.
Currently each test runs automatically, however, human intervention is still required
between each script to record the results and load and start the next test. A batch mode
would enable users to define and run a test playlist.
Methods, tests are currently defined and run as a single continuous sequence. The ability
to define parameterised methods has the potential to make scripts more expressive.

OPC Unified Architecture. CERN's current OPC implementations are OPC-DA, which is being superseded
by the OPC-UA specification. CERN has been evaluating this specification and OPC-UA implementations
are expected in the next few years. OPC-UA support will include extending the DSL to encapsulate new
features in the specification, handling OPC-UA security measures and a cross platform version.

