
A. Barbalace, A. Luchetta, G. Manduchi, C. Taliercio, Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy

B. B. Carvalho, D. F. Valcárcel, IPFN, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Presenting author email: antonio.barbalace@igi.cnr.it

Comparative Analysis of EPICS IOC and MARTe for the
Development of a Hard Real-Time Control ApplicationEuratomEuratomEuratomEuratom ENEAENEAENEAENEAAssociationAssociationAssociationAssociation

Strict determinism or occasional event loss are tolerated?

Which latency is acceptable?

COMPONENT BASED APPROACH

CONCURRENT MODELS OF COMPUTATION

CONCURRENT MODELS OF TIME

REAL-TIME SUPPORT

Going to develop a Real-Time Control Application?
Hard or Soft Real-Time?

What about exploiting the last hardware technologies on the market?

MARTe
MARTe/BaseLib CVS June 2011

EPICS IOC
EPICS version 3.14.11

• Two special subclasses of the GAM can handle data communication with a device driver:InputGAM
and OutputGAM. Such classes can be associated to an I/O device via a Generic ACQuisition
Module (GACQM).

• For every record type it is possible to define a new Device Support that enables the record to

interact with an I/O device.

• New components are created by subclassing the GAM class or any other descendant of the GAM

class.

• New record types (called Record Support) can be created by providing a set of routines and data

structures.

• GAMs belong to a RealTimeThread• Records are logically grouped in databases.

• Components are implemented by Generic Application Modules (GAMs).• Components are implemented by records.

CONFIGURATION CAPABILITY

• In order to change a GAM parameter it is necessary to stop the execution of every MARTe activity

and reload the framework.

• Value and compound data of a record can be tuned at runtime.

• When a new GAM is ready to be tested the developer has to compile it, write a test configuration file
(modifying a template) and run the project.

• When a new record is ready to be tested the developer has to create a new project, insert the record
with ancillary files in the project, create the configuration files compile all and run the project.

• To load or remove a GAM just reload the configuration file: it is not necessary to recompile the

application.

• To load or remove a record a user has to change the configuration files and recompile all the

application from scratch before running it again.

• In MARTe a configuration file is loaded by a running MARTe system.• In EPICS a configuration file is used to generate IOC source code before compilation.

• A configuration file contains different lists of GAMs and instance descriptors of C++ classes.• The database configuration file is populated by a list of records.

• The configuration of a MARTe application is held by a single file.• The configuration of an EPICS IOC application spans across different files.

• Those GAMs that have to be executed next are determined by one of the GAM scan lists of the

RealTimeThread. The links associated to every GAM determine the data-flow. Data is excanghed by

means of a thread-level data buffer called Dynamic Data Buffer (DDB).

• After the processing has been triggered on the first record of a chain those records that have to be

executed next are determined by the associated link in the database. A link can carry data and

processing (INLINK, OUTLINK) or simply processing (FWDLINK).

• MARTe is a lock-free execution environment. Inter-thread communication exists. • Since a single record can be concurrently accessed by different scans, per-record locks exist.

• A RealTimeThread can be locally triggered by software or hardware events (interrupts); remotely by

any of the supported communication libraries (MDSplus, EPICS).

• A scan can be locally triggered periodically (periodic scan) or by software and hardware events

(event scan, IO event scan); remotely by caGet or caPut operations.

• The thread in which the GAM is executed is called RealTimeThread.• The processing of a chain of records takes place within a scan (an Operating System’s thread).

•MARTe eliminates contention. Each GAM executes serially in an Operating System’s thread to
which is uniquely tied. Execution is data-driven.

• A single record in an EPICS IOC can be accessed concurrently for reading, writing or processing.
Reading and writing can trigger processing, before fetching a value (demand-driven) and after

updating a value (data-driven).

• In MARTe one output signal from a GAM can be connected to as many GAMs as needed.• In EPICS it is possible to have many INLINKs to the same record’s field but it is not possible to have

an OUTLINK or a FWDLINK connected to more than one record’s field.

• MARTe does not support data diversity: two GAMs can communicate only if they both adhere to

the same data interface.

• EPICS supports data diversity by means of a rich set of protocol adapters.

• MARTe will never exhibits out-of-stack exception because the number of execution frames on the

stack is O(1).

• A long EPICS’ chain of passive records with many links can produce an out-of-stack exception, the

number of execution frame on the stack is O(n) where n is the number of passive chained records.

• Periodic timing is provided by a GACQM interfaced with a TimeInput GAM. Algorithmic GAMs are
aware of the absolute time and of the execution period T (via ExternalTimeTriggering service).

• A discrete algorithm will be executed in a non-uniform sampling environment. The smart way choosen
in the PID record is to define a minimum amount of time between record processings.

• Each GAM is triggered once per period and the time elapsed between calls to GAMs is equivalent to

period T.

• No time model can be assumed, a record can be processed at any time by different (concurrent)

scans.

• MARTe does not queue any event: events can be lost but there is no jitter due to events
enqueuing.

• Every event is queued for execution and never lost. There are different queues of execution and the

execution policy is FIFO. One queue handles CA requests; three queues (low, medium, high priority)
are shared between events and IO events and there is one queue per periodic scan.

• MARTe allow the developer to assign threads and IRQs to specific processors. The affinity mask of

threads and IRQs on the processors is a parameter in the MARTe configuration file.

• The EPICS Operating System Interface (OSI) layer does not support multiprocessor
environments. A static set of queues is defined for each instance of EPICS IOC.

• The way in which a device driver (GACQM) waits for a hardware event is selectable (polling or

interrupt) and defined in the configuration file.

• The developer can not choose how to wait for an event, it fully depends on the device driver.

13th International Conference on Accelerator and
Large Experimental Physics Control Systems

October 9 - 14, 2011 - Grenoble, France

Aknowledgments
This work was set up with financial support by Fusion for Energy.

What about jitter?

• Both create during initialization all data structures that are required at runtime.• Both are written in C/C++ language.

• Both are configurable at initialization and reconfigurable at runtime.• Both are portable on different operating systems and architectures.

• Both are component based (components can be connected to carry out the required control

algorithm).

• Both are programming environments to code a real-time control system suited for scientific
experiments.

