INSTITUT MAX VON LAUE - PAUL LANGEVIN

A Trigerless Acquistion System for Large Detector Arrays

P. Mutti, M. Jentschel, E. Ruiz-Martinez, J. Ratel, F. Rey, W. Urban

NEUTRONS

FOR SCIENCE®

DIGITAL APPROACH

ABSTRACT

State-of-art y-ray spectroscopy requires nowadays the use of large arrays of high purity Ge detectors (HPGe). The large multiplicity of the detection system requires:

The capability to process the multitude of signals from many detectors.

	_		
raditional analogue			PEAK
	5	Charge Sensitive	ADC

- Fast processing \rightarrow on-line event display.
- Very high throughput of more than 10⁶ data words/sec.

Digital acquisition

DETECTOR

Digital pulse processing systems Better timing and energy resolution Linearity and stability Low cost per channel and

reliability

RESULTS

- A/D conversion must be done as early as possible to preserve the information
- The major problem is the throughput rate (readout bandwidth)

WAVEFORM

DIGITIZER

Digital Pulse

Processing

DPP parameters

No possible to read row data and make the analysis on-line

Charge Sensitive

reamplifier

Array of eight HPGe detectors for g-spectroscopy studies from (n_{th}, g) reaction

Scientific goal: to verify the beam quality, with respect to background and collimation.

Energy spectrum measured by the HPGe detector from ¹⁵²Eu radioactive source

Performance target: to test the overall performance of the new acquisition in view of the upcoming EXOGAM campaign of measurements.

Energy resolution of 2.45(5) keV at the 1408 keV g-line. In the zoom area the doublet at 1085 and 1089 keV is *clearly resolved!!*

Combination of HPGe and BGO detectors

Scientific goal: to measure the e^+e^- pair-production cross-section close to the 1022 keV threshold.

• The FPGA can do on-line digital pulse processing (DPP) to extract and save only the quantities of interest.

ENERGY

COUNTING

POSITIO

IDENT

The purpose of the DPP is to perform on-line signal processing able to transform the row sequence of samples into a compressed data packet that preserves the relevant information.

LIST MODE

The digitized signal is processed on-line and the acquisition is continuous.

ENERGY LIST SAVE TO MEMORY (n pulses)

TIMING AND TRIGGER

DPP trigger and the time tag are based on the voltage step. 2nd derivate of the signal (delta2).

ENERGY (TRAPEZOIDAL FILTER)

A trapezoidal filter is applied to the input signal to derive its amplitude, proportional to energy.

Performance target: to derive the timing properties of the new acquisition with the analysis of the recorded list-mode data acquired using a ²²Na radioactive source in pair spectrometer mode.

Time between BGO (start) and Ge (stop), measured for ²²Na source in pair spectrometer mode

The time difference between g-detection in any of the BGO detectors and the corresponding detection in the Ge detector is plotted versus time. A single, very clean peak is visible at about 200 ns after the g-detection in the BGOs.

The newly developed acquisition system consist of:

Digitizers: a number of digitizers according to the required number of detectors. Flash ADC CAEN v1724.

Processor card: Power PC based VME board computer equipped with 256 MB of memory.

Instrument control software: full graphical interface to access all parameters related to the configuration of the digitizers as well

Instrument Control Service. Project & Techniques Division. http://www.ill.eu/instruments-support/instrument-control/ Institut Laue-Langevin. B.P.156 - 6 rue Jules Horowitz 38042 Grenoble, France.

WEPMN025 ICALEPCS 2011 October 10-14. Grenoble, France