
COMMERCIAL FPGA BASED MULTIPURPOSE 
CONTROLLER: IMPLEMENTATION PERSPECTIVE

I. Arredondo∗, M. del Campo, P. Echevarria, D. Belver, 
L. Muguira, N. Garmendia, H. Hassanzadegan, ESS-Bilbao, Spain 

J. Jugo, V. Etxebarria, University of the Basque Country, Leioa, Spain

Abstract

System Description

AD

DA

FPGA cPCI

Read

Write Get

Put
Out

In

Instrument Lyrtech VHS ADC

Configuration Files

Local PC

Remote PC 

HC EPICS IOC EPICS Client

LAN

Bitstream XML Conf. DB

HOST DB

Write

CLIENT DB

Write

GUI

ReadWrite

This work presents a fast acquisition multipurpose controller, focussing on its EPICS integration and on its XML based configuration. This controller is based on a Lyrtech 
VHS-ADC board which encloses an FPGA, connected to a Host PC. This Host acts as local controller and implements an IOC integrating the device in an EPICS network. 
These tasks have been performed using Java as the main tool to program the PC to make the device fit the desired application. All the process includes the use of different 
technologies: JNA to handle C functions i.e. FPGA API, JavaIOC to integrate EPICS and XML w3c DOM classes to easily configure the particular application. In order to 
manage the functions, Java specific tools have been developed: Methods to manage the FPGA (read/write registers, acquire data,...), methods to create and use the EPICS 
server (put, get, monitor,...), mathematical methods to process the data (numeric format conversions,...) and methods to create/initialize the application structure by 
means of an XML file (parse elements, build the DOM and the specific application structure). This XML file has some common nodes and tags for all the applications: FPGA 
registers specifications definition and EPICS variables. This means that the user only has to include a node for the specific application and use the mentioned tools. It is the 
developed main class which is in charge of managing the FPGA and EPICS server according to this XML file. This multipurpose controller has been successfully used to 
implement a BPM and an LLRF application for the ESS-Bilbao facility.

Instrument: Sensor/actuator to be controlled.

Lyrtech  VHS ADC: FPGA based device.
        - Read data from Instrument.
        - Write data to Instrument.
        - Perform fast calculations.

Local PC: Handling machine.
     - Configuration Files: XML and bitstream files to configure the HC, FPGA, 
GUI and DB.
      - EPICS IOC: EPICS server to communicate the data over the network. It is 
based on JavaIOC.
       - Host DB: DB to log data locally.
       - GUI: Graphical User Interface to allow local user control.
       - Hardware Controller (HC) : Java based program to handle the other 
devices.
                + Configure MC from files.
                + Read/write data from/to the Lyrtech VHS ADC.
                + Create EPICS Server.
                + Get/Monitor/Put from/to the EPICS Server.
                + Read/write data from/to the GUI.
                + Write data to the DB.
                + Configure the FPGA.
                + Make slow calcultaions.

Remote PC: Remote PC which can handle all the functionalities remotely 
using EPICS connection.
       - Client DB: DB to remotely log the desired data.

System Description MC Reconfiguration

org.essb.mc.epics.db: EPICS Archiver MySQL DB implementation, 
managing and configuration tools.
 
org.essb.mc.epics.db.tables: EPICS Archiver MySQL DB formatting 
utils.

org.essb.mc.epics.utils: EPICS utils to manage a javaIOC: create/
destroy
context, connect/disconnect channels, caget synchronous/
asynchronous, caput synchronous/asynchronous, create/destroy 
monitor and camonitor. 

org.essb.mc.fpga.program: Handle the FPGA: Open/Close board, 
program FPGA, program Flash, set FPGA clock, set ADCs status, read 
ADCs overflow and Read/Write Registers. 

org.essb.mc.fpga.maths: FPGA raw to engineering units conversion 
and vice versa, and standard numeric conversions. 

org.essb.mc.gui.general: Utils to create the GUIs with the most 
common objects. 

org.essb.mc.xml: Tools to acquire the configuration data from an XML 
document and use it in the main program.

Programming Tools

*iarredondo@essbilbao.org

DOM Document (On RAM)

Ja
v
a
 C

la
ss  M

C
E
ssb

X
M

L

initXML

...
Index 1 2 3 4 n

Value

FPGA ...

...

Read

Write

Reg Bits

Prec

Reg

Cust

ADDR

Signed

EPICS

Elmnt

Chnnl

Monit

...

BPM Left

Right

Up

Down

Amp

Phase

Index

Index

Index

X

Y

From Program

Index

Config

Config

Config

Index

Index

Index

Index

From Program

From Program

DOM

fillFPGARW

DOM

fillFPGARW

DOM

fillEPICS

DOM
fillBPMConf

DOM
fillBPMConf

DOM
fillBPMConf

DOM
fillBPMConf

DOM
fillBPM

DOM
fillBPM

DOM
fillBPM

DOM
fillBPM

DOM
fillFPGA

DOM

DOM

DOM

DOM

DOM

fillFPGA

fillFPGA

fillFPGA

fillFPGA

fillFPGA

Index

a0

a1

a2

a3 Config DOM
fillBPMConf

initXML

initXML

<MCEBC> 
 <MCESSB>
  <Name>BPM_TEST_0000_AMP</Name> >
  <Value>0.0</Value>
  <FPGA> 
   <Used>true</Used>
   <Bits>15</Bits>
   <Prec>0</Prec>
   <Reg>4</Reg>
   <Custom>false</Custom>
   <Custom_ADDR>0</Custom_ADDR>
   <Signed>true</Signed>
   <RW>0</RW>
  </FPGA>
  <EPICS>
   <Used>true</Used>
  </EPICS>
  <BPM>
   <Used>true</Used>
   <Element>Amp</Element>
   <Fit>9.455,-0.01279,-0.002245,-1.166e-005</Fit> 
  </BPM>
 </MCESSB>
 <MCESSB>
  <Name>BPM_TEST_0000_PHASE</Name>
  <Value>0.0</Value>
  <FPGA> 
   <Used>true</Used>
   <Bits>28</Bits>
   <Prec>14</Prec>
   <Reg>5</Reg>
   <Custom>false</Custom>
   <Custom_ADDR>0</Custom_ADDR>
   <Signed>true</Signed>
   <RW>0</RW>
  </FPGA>
  <EPICS>
   <Used>true</Used>
  </EPICS>
  <BPM>
   <Used>true</Used>
   <Element>Phase</Element>
   <Fit>0</Fit>
  </BPM>
 </MCESSB>

MCESSB

BPM_TEST_0000_AMP

FPGA EPICS BPMName Value

0.0

0

4

Used Bits

Custom C_ADDR

true 15

false 0 true

Prec Reg

Signed RWB

0

Used

true

Used

true

9.455,-0.01279,-0.002245,-1.166e-005

Fit

Elemnt

Amp

MCESSB

BPM_TEST_0000_AMP

FPGA EPICS BPMName Value

0.0

0

4

Used Bits

Custom C_ADDR

true 15

false 0 true

Prec Reg

Signed RWB

0

Used

true

Used

true

9.455,-0.01279,-0.002245,-1.166e-005

Fit

Elemnt

Amp

MCEBC

...
...

1.- Create the bitfile of the FPGA which fit with the application.

2.- Update the configuration file:
   a) Update the FPGA structures according to the previously designed 
FPGA bitfile.
    b) Update the EPICS structures.
    c) Include a new structure for the application in the configuration file.

3.- Use the org.essb.mc.xml tools to integrate the new structure into 
the HC.

4.- Use the org.essb.mc.gui.general tools to adequate the GUI to the 
application. It is only needed to change the application tab, because the 
FPGA handling one is always the same.

New application implementing steps


