
10 - 14 October 2011

Authors : B. Copy, M. Mettälä, CERN, Geneva, Switzerland

JACOW ID WEPKS001
Authors : B. Copy, M. Mettälä, CERN, Geneva, Switzerland

Abstract

Objective Have a global overview of your software engineering processes
while relying on best-of-breed off-the-shelf products

Issue Management Change Management Dependency Management

RDF RDF RDF

Resource Description Framework (RDF) is a
standard model for data interchange on the Web.
RDF extends the linking structure of the Web to
use URIs to name the relationship between things
as well as the two ends of the link (this is usually
referred to as a “triple”). Using this simple model,
it allows structured and semi-structured data to
be mixed, exposed, and shared across different
applications.
We perform transformation from proprietary data
(e.g. JIRA issue entries) to standard RDF.

RDF

Javascript Object Notation (JSON)
Javascript Object Notation (JSON) is used to
translate RDF XML triples into a web browser-
friendly notation.
All RDF data is merged into a large JSON
object graph and fed to the Exhibit framework.

JSON

Exhibit Framework

Conclusions

NavigationVisualizations Queries and filters

Build
Integration

The production and exploitation of industrial control systems differ substantially from
traditional information systems; this is in part due to constraints on the availability and
change life-cycle of production systems, as well as their reliance on proprietary
protocols and software packages with little support for open development standards [1].
The application of agile software development methods therefore represents a challenge
which requires the adoption of existing change and build management tools and
approaches that can help bridging the gap and reap the benefits of managed

development when dealing with industrial control systems. This paper will
consider how agile development tools such as Apache Maven for build
management, Hudson for continuous integration or Sonatype Nexus for the
operation of "definite media libraries" were leveraged to manage the
development life-cyle of the CERN UAB framework [2], as well as other
crucial building blocks of the CERN accelerator infrastructure, such as the
CERN Common Middleware or the FESA project.

This process focuses on collecting, prioritizing and refining customer demands
and internal product quality feedback. Whether use cases, requests for new
features or defects identified in existing products, such inputs must be
classified and scheduled so as to reduce the risk of unwanted side effects and
ensure timely release delivery. Change brought to a product must always take
for reference a prior request for such change (once again, to reduce the risk of
unidentified and unwanted modifications that could break a working product).

This process ensures that changes can be audited, and grouped into coherent
set of modifications. Sets of modifications will eventually compose a release.
Change management is often seen as a burden by software developers, but
becomes a key activity when it is coupled with release management – for
instance, once a product version is out in the wild, it is essential to know
exactly what differentiates this version from the one that worked better a few
weeks or months ago.

As agile teams happily release ever improving deliverables, being able to
orchestrate dependencies among these deliverables becomes an increasingly
difficult task. Establishing clear policies and allowing the definition of
dependency ranges becomes a very important aspect of software project
management. Considering that software project increasingly rely on third-
party open source dependencies, it also becomes important to state and
monitor the provenance of such dependencies. Sonatype Nexus is the Maven
repository used to manage dependencies centrally.

Integrating software engineering process data sources is useful in order to obtain a global
vision of development and release activities. While most engineering process deliver access
to structured data, integrating and correlating this information is currently a non-trivial
task.
While our usage of RDF as a common data format has certainly proven a workable
approach, certain limitations subsist in the current support of RDF. The Exhibit framework
for instance was designed highly interactve representation of low volumes of information.

A sample extraction of the UAB project activity over the course of 14 months, totalling
about 600K lines of code, yielded a 5 megabytes Exhibit JSON input file containing
9275 records, which the Exhibit framework handles with difficulty (requiring a 20
seconds initial startup time and delivering occasional sluggish data filtering
performances).
A complete rewrite of the Exhibit framework (Exhibit v3) is interestingly under way in
order to ease the integration of third party visualizations and make it able to cope with
datasets gathering more than 5 millions of records.

The MIT Exhibit framework offers a generic way
to represent, query, filter and visualize RDF data.
We use the Exhibit Framework and have
integrated a new visualization yet not supported
by the framework for the representation of
dependency trees.

Simile Exhibit

We wrapped data extractions and transformations into an Apache Maven site plugin –
seamlessly integrating engineering process information into a web-based Maven
documentation site [4].
This is useful for continuous integration software packages that support Maven but
would not necessarily understand RDF or be able to handle the Exhibit framework.

References
[1] R. Barillère, Ph. Gayet, "UNICOS A Framework to build industrylike control
systems, principles and methodology", ICALEPCS 2005, Geneva, Switzerland, WE2.26I
[2] M. Dutour, "Software factory techniques applied to Process Control at CERN",
ICALEPCS 2007, Knoxville Tennessee, USA, http://www.JACoW.org.
[3] APM Group, “What is ITIL ?”, 20072011, http://www.itilofficialsite.com/AboutITIL/
WhatisITIL.aspx

[4] Apache Maven Project, “Guide to creating a documentation site“,
http://maven.apache.org/guides/mini/guidesite.html
[5] B. Copy et al., “Model Oriented Application Generation for Industrial
Control Systems”, ICALEPCS 2011, Grenoble, France, WEAAULT02
[6] Massachusetts Institute of Technology (MIT), “The Exhibit Framework”,
2011, http://www.similewidgets.org/exhibit3/

Data visualizations represent large amounts of information in an immediately
understandable form. Maps, pie charts or tables are traditional visualizations, but
others such as heat maps or sparklines can also deliver great expressiveness. In
any case, visualizations are decoupled from the data they represent.
The Exhibit framework supports Timeline visualizations (middle), we have
extended it with an interactive, Javascript, dependency graph visualization (left).

The Exhibit framework automatically generates filter and free-text search
dialogs using the data at hand. Filters apply across all visualizations,
ensuring view consistency.
In our example, it is possible to filter information per JIRA issue key
(middle fig.), or per SVN revision number (right fig.).

The Exhibit framework allows to navigate between RDF triples once the
navigation paths have been configured. It is therefore possible to follow a
dependency's version to the JIRA issues it was composed of, then on to
the SVN commit operations performed in the context of one or more
selected JIRA issues.

SVN Commit
Comments

SVN Version Tags

