
© 2011 Tech-X Corporation

Work partially supported by Tech-X Corpoation and by the Office of High-
Energy Physics, Office of Science, U.S. Department of Energy under
Contracts #DE-FG02-08ER85043 and #DE-SC0000842

The 13th International Conference on Accelerator and Large
Experimental Physics Control Systems, October, 2011

Experiences in Messaging Middleware for
High-Level Control Applications

Nanbor Wang*, Svetlana Shasharina, James Matykiewicz, and Rooparani Pundaleeka

Tech-X Corporation
*nanbor@txcorp.com

 Existing high-level applications in accelerator control and
modeling systems leverage many different languages, tools and
frameworks that do not interoperate with one another. As a result,
the accelerator control community is moving toward the proven
Service-Oriented Architecture (SOA) approach to address the
interoperability challenges among heterogeneous high-level
application modules. Such SOA approach enables developers to
package various control subsystems and activities into “services”
with well-defined “interfaces” and make leveraging heterogeneous
high-level applications via flexible composition possible. Examples
of such applications include presentation panel clients based on
Control System Studio (CSS) and middle-layer applications such
as model/data servers.

	 This	 poster	 presents	 our	 experiences	 in	 developing	 a	 demonstra5ve	
high-‐level	 applica5on	 environment	 using	 emerging	 messaging	
middleware	 standards.	 	 In	 par5cular,	 we	 u5lize	 new	 features	 such	 as	 in	
EPICS	 v4	 and	 other	 emerging	 standards	 such	 as	 Data	 Distribu5on	 Service	
(DDS)	 and	 Extensible	 Type	 Interface	 by	 the	 Object	 Management	 Group.	
We	 briefly	 review	 examples	 we	 developed	 previously.	 We	 then	 present	
our	 current	 effort	 in	 integra5ng	 DDS	 into	 such	 a	 SOA	 environment	 for	
control	 system.	 Specifically,	 we	 illustrate	 how	 we	 are	 integra5ng	 DDS	
into	 CSS	 and	 showcase	 our	 other	 DDS	 efforts.	

Abstract

Motivations

Middle-Layer Server Examples

•  We extended the open source TouchStone performance test
suite to work with most DDS implementations

•  The test suite helps developers to explore different ways to
configure the overall system QoS policies using different
operational scenarios before actually developing the
applications

DDS Performance
Test Suite

We developed an example middle-layer server on top of two
different DDS implementations:
•  Web Browser runs UI
•  Web Server connect to the actual Optim Server using pub/sub

protocols (DDS and EPICS-DDS)
•  Optim Server runs MAD-X or UAL

Data-centric publish-subscribe middleware provides more flexible
coupling between data information producers and consumers.
Furthermore, DDS has built-in Quality-of-Service policies that are
crucial to control systems.

Why Data Distribution Service?

•  Deadline: Establishes contract regarding rate at which periodic
data is refreshed

•  Latency: Establishes guidelines for acceptable end-to-end
delay

•  Time-based Filter: Mediates exchanges between slow
consumers and fast producers

•  Resource Limit: Controls resource utilization by DDS entities
•  Reliability: Controls message delivery QoS (Best-effort/reliable)
•  History: Control how many messages are kept by the

middleware (keep last n/keep all)
•  Durability: Control the lifecycle of data (volatile, transient,

persistent)

Integrating DDS into CSS

Motivation: The Intensity Frontier experiment employs
both EPICS and DDS in the instrument. It is necessary
to monitor information and send control signals over
both protocols.

•  The easiest way for Python code to interact with DDS data
space is to wrap up C/C++ generated code with SWIG/
Boost.python
•  Type-specific wrappers
•  Extra-steps necessary to generate wrappers
•  Need to regenerate wrappers when topic structures change
•  Not compatible to Python’s dynamic/interpretive language

nature

Summary and Future Work

•  With the new pyDDS library, a Python application:
•  Dynamically generate type-specific objects right inside

Python application using services provided by pyDDS
•  Interact with DDS services directly via pyDDS
•  Does not require extra tools or separate steps to generate

wrappings for every topic structure
•  Take advantabe of Python’s dynamic language features and

fit into its development flow

A SOA with dual messaging buses have shown to be an effective
approach to address the scalability and interoperability challenges
of modern large-scale accelerator control systems. We are
developing tools and libraries to simplify the adoption of DDS. We
plan to continue to harden these tools and enhance them to
support more dynamic features such as run-time type resolution
and the emerging extensible type standard to make them more
robust and adaptable to new application needs.

Python DDS (pyDDS)

•  Client-‐Server/RPC-‐styled/remote	 object	 messaging	 protocols	 are	
suitable	 for	 command/control	 and	 deployment	 purposes	
•  They	 are	 not	 suitable	 for	 dynamic	 services	

•  Dual	 messaging	 buses	
•  Solu5ons:	 Adding	 a	 publish/subscribe	 messaging	 protocol	

•  OMG	 DDS	
•  Java	 Messaging	 Service	
•  EPICSv4	 pvData,	 EPICS-‐DDS	

Service-Oriented
Architecture (SOA) for

Control Systems

Off-line
Model

Online
Model

Machine
Middle Layer

Thick
Application

EPICS	 	

Thin
Application

Real	 Accelerator	 	 Virtual	 Accelerator	 	

•  Modern	 accelerators	 have	 greatly	 increase	 complexity	 and	 scale	
•  More	 devices	 and	 sub-‐devices	 to	 control,	 configure,	 monitor	

simultaneously	
•  With	 more	 and	 more	 features	 and	 automa5ons	 	

•  High-‐level	 client	 and	 physics	 applica5ons	
•  Centralized	 control	 panels	 for	 users	 of	 different	 roles	
•  Distributed	 display	 for	 off-‐site	 users	

•  There	 exist	 many	 standard	 environments	 for	 ACS	
•  EPICS,	 Tango,	 Tine,	 ACNET,	 etc.	

•  Limited	 interfacing	 supports	
•  Hard	 to	 expand	 system	 by	 dynamically	 adding	 components	 	

Web Client

Web Server

Optim Client

Optim Server
Request PV

Optim Server CAS

Optim Server
Result PV

Optim Engine

Optim Engine
Thread

MAD-X/
UAL

Twiss File

Web Browser

Web Server

Optimization
Server

Figure 4: Architecture of the general purpose web-based optimization service.

files to the service and returns the visual results of twiss calculations. Physicists can use it
to submit a series of incremental optimizations and see the optimization results remotely.
Although this software as a service (SaaS) prototype provides somewhat limited usefulness
for real applications, it nonetheless demonstrates the core idea on SOA using DDS and lays
down the foundation for further more complicated services.

We began implementing the prototype service using the UAL. Composition UAL is an
Epics-DDS v1.5 example application, and like Tech-X performance apps, it is self-contained
in that there is no need to start an additional process (server). Composition UAL relies
heavily on UAL for defining/reading/writing accelerator lattices (.adxf) and UAL’s Twiss
algorithms.

In general, this set of applications initializes an Epics caServer with pre-defined PV
information and provides a couple of different tools to read data from the server and use the
UAL libs to calculate Twiss parameters and tracking results. There is a publisher to ’tickle’
the beam provide some small variance to the BPM data.

Since multiple Epics caServers can be configured to communicate with one another,
several of these applications can be run at the same to time read and write PV record
data. For example, MachineServer, TwissServer and VAServer are ’pure’ caServer apps
used to initialize PV data and read PV data for calculating results. Figure 5 show how
the MachinePublisherClient and MIAClient use the Epics-DDS API to update the PV data
and read the updates for calculating results. This application has several key components,
including:

• MIAClient - this process is an Epics-DDS application used to read PV data from
the pre-defined topics and calculate both Twiss parameters and Turn-by-turn (TBT)

12

!

DDS	 Global	 Data	 Space	
(Domain)	

Publisher	

Publisher	

Publisher	

Subscriber	

Subscriber	

Subscriber	

Topic	
A	

Publisher	

Publisher	

Publisher	

Subscriber	

Subscriber	

Subscriber	

Topic
B	

Throughput	
MB/sec?	

Throughput	
MB/sec?	

Throughput	
msgs/sec?	

Throughput	
msgs/sec?	

Latency	
msec?	

Priority/	
Rates?	

•  We modeled after org.csstudio.platform.libs.epics and
implemented a set of plug-ins to present DDS topics as PV’s:
•  com.txcorp.soaac.css.platform.libs.dds
•  com.txcorp.soaac.css.platform.libs.dds.ui
•  com.txcorp.soaac.css.pv.dds

•  The added plug-ins enable CSS applications to subscribe/
publish (get/set) a DDS topic (structured like a PV)
•  For example, an OPI widget can be associated to a PV
dds://temperature3

Current Status:
•  Topics (with their associated QoS policies) need to be

p r e c o m p i l e d i n t o j a r f i l e s a n d l o a d e d t h r u
com.txcorp.soaac.css.pv.dds

•  We currently support only DDS topics with structures similar to
PVs (with some meta-data)

Ongoing effort:
•  Add support for general DDS topic structures such as,	 	
dds://Booster/Quad/Magnet2#current

•  Add support for dynamic topic/QoS definitions via XML
(eliminate the need to implement a separate .jar file)

Domain	 Par5cipant	

Netwotk	

Subscriber	 Publisher	

Writer	 Reader	

TopicWriter	 TopicReader	

pyDDS	 Services	

Python	 Applica5on	

Joining	 a	 Data	 Domain	
A one-stop interface into the pydds global
factory methods
import pydds;

Uers defines their dataspace/runtime and

pass it in as an argument to various other
operations that need it. (See later)
myDataspace =
 pydds.connect_dataspace
 (“Domain name”, “Partition name”)

A Dataspace object should contains some
default subscriber/publisher objects with
some default QoS policies.

Manipulate	 QoS	 Policies	
myQoS = pydds.create_qos()

myQoS.set_reliable (3000000)

myQoS.set_transient()

myQoS.set_keep_last (3)

	

Create	 Topic	 Reders/Writers	
Creating/Finding a topic in global data
space. Last argument specifies the URI
of topic structure definitions
helloTopic = pydds.createTopic
 (“TopicName”,
 myDataspace,
 myQoS,
 file:///HelloWorld.idl#HelloTopic);
Now create reader/writer objects
helloReader = helloTopic.create_reader
 (readerQoS);
helloWriter = helloTopic.create_writer

 (writerQoS);

Wri5ng	 and	 Reading	 Samples	
Creating a sample

helloSample = helloTopic.create_sample

 (message = “John Smith”, repeat = 3);

Publishing the sample

status = helloWriter.write (helloSample);

Simple read/take

[samples, infos] = helloReader.read();
sys.stdout write(samples[0].message);

Listen-‐based	 Read	 Modeled	 a\er	 Twist/
Trellis	

	

 !

!

SOAAC:&Service,Oriented&Architecture&for&Next,Generation&Large,Scale&
Accelerator&Control&Systems&

Phase&II&SBIR&Project&,&DE,FG02,08ER85043&
Nanbor&Wang&–&Tech,X&Corporation&

In!collaboration!with!NSLS1II!control!system!researchers!at!BNL,!Tech1X!Corporation!is!developing!a!

reference!Service1Oriented!Architecture!(SOA)!environment!for!accelerator!control!systems!that!

promotes!multiple!levels!of!loose!coupling!to!increase!the!robustness!and!adaptability!of!overall!control!

applications.!Traditional!frameworks!for!accelerator!control!system!development!do!not!scale!well!for!

control!systems!of!next1generation!large1scale!accelerators!that!consist!of!many!sub1accelerators!and!

operation!teams.!By!focusing!on!strengthening!the!existing!EPICSv4!dynamic!data!interfaces!and!

communication!mechanisms,!this!project!contributes!to!the!development!of!High1Level!Application!(HLA)!

environment!in!NSLS1II!control!systems!being!developed!by!BNL.!!The!attached!diagram!illustrates!the!

architecture!of!a!HLA!environment!adopted!by!the!NSLS1II!control!system!group.!The!new!development!

paradigm!enabled!through!this!paradigm!will!encourage!robust!integrations!of!heterogeneous!control!

subsystems.!Various!control!subsystems!and!activities!can!be!implemented!separately!and!packaged!

into!“services”!with!well1defined!“interfaces”!for!to!enable!composition!of!applications.!!Tech1X!is!

currently!working!with!NSLS1II!control!system!group!to!enhance!the!design!of!dynamic!data!access!

interface!and!developing!an!example!HLA!scenario!that!include!a!model!server!and!CSS!presentation!to!

demonstrate!how!new!HLA’s!can!be!incorporated!into!the!system!easily.!

High-Level
Client

Applications

Presentation Clients
(Control System

Studio)
MMLT Clients Scripting Clients

Machine
Server

BPM
Server

EPICS CAv3

Dipoles Quad’s Sext’s

EPICS CAv3

BPM BPM BPM

Service Bus EPICS CAv4 (pvData,pvAccess), EPICS-DDS

Model Server
(Tracy/Elegant)

Lattice/
ChannelFinder

Server

IRMIS
Tables

Orbit/Data Server
(Conv/Resp)Middle-Level

Services

Real-time
Front-End

Acknowledgment:	 The	 authors	 wish	 to	 thank	 Nikokay	 Malitsky	 of	 Brookhaven	 Na5onal	 Lab	 for	 providing	 the	 middle-‐
layer	 server	 examples,	 and	 	 Jim	 Kowalkoski,	 Marc	 Paterno,	 	 Kurt	 Biery,	 and	 Erik	 Go^schalk	 of	 Fermilab	 for	 discussing	 the	
needs	 and	 requirements	 of	 the	 projects	 they	 are	 working	 on.	

