Radiation Safety Interlock System for SACLA (XFEL/SPring-8)

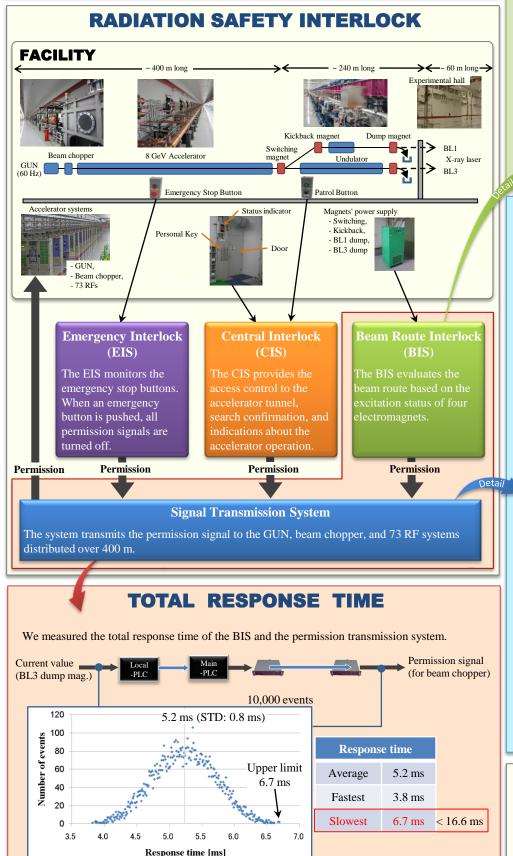
M. Kago #, T. Matsusita, N. Nariyama, C. Saji, R. Tanaka, A. Yamashita, JASRI/SPring-8, Hyogo, Japan Y. Asano, T. Hara, T. Itoga, Y. Otake, H. Takebe, H. Tanaka, RIKEN/SPring-8, Hyogo, Japan

INTRODUCTION

SACLA (SPring-8 Angstrom Compact free electron LAser), which comprises an 8 GeV linear accelerator and undulators, was constructed.

To protect personnel from radiation hazards, the radiation safety interlock was designed and constructed. The system controls access to an accelerator tunnel and monitors safety devices. It controls permission signals for accelerator systems in accordance with safety conditions. When a safety condition is not satisfied, the system turns off the permission signal, thereby terminating the electron beam.

The radiation safety interlock system needs to be reliable and stable. In addition, the system requires specific functionality, as described below

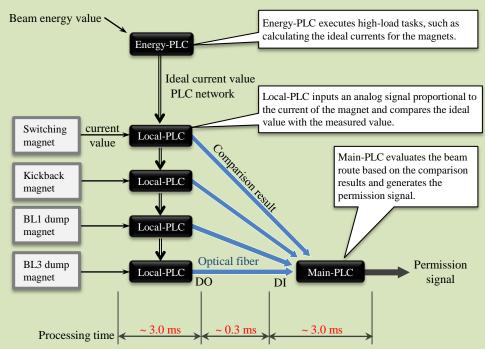

- <u>Fast beam abort</u>

When the electron beam deviates from the beam dump, the electron beam generates unexpected radiation. Therefore, when this situation is detected, the next beam injection should be avoided, i.e., the radiation safety interlock needs to terminate the beam within 16.6 ms.

 \rightarrow Beam Route Interlock

- <u>Permission signal transmission</u> → Signal Transmission System

Within the klystron gallery of approximately 400 m long, 73 RF systems are distributed and placed. Thus, the permission signal must be transmitted over a long distance to a large number of accelerator systems.

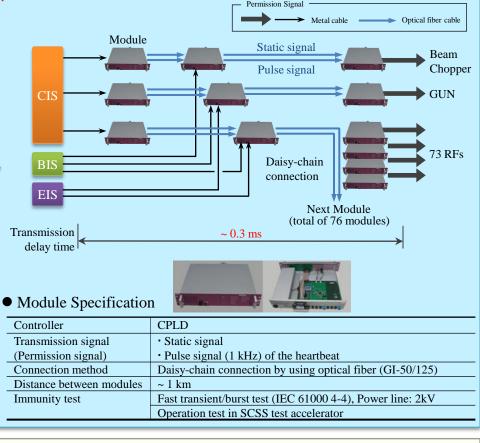


BEAM ROUTE INTERLOCK

If the electromagnet is not properly excited, the BIS turns off the permission signal for the GUN and beam chopper within 16.6 ms.

To achieve fast processing time → Multi-PLCs with tiny program → Divided communication line: - Direct fiber optic I/O connection (fast)

- PLC network (slow)



SIGNAL TRANSMISSION SYSTEM

- To achieve fast beam termination, the permission signals for the GUN and beam chopper must be stable and must have fast transmission speeds.

- The permission signal for RF systems is required to transmit over long distances and to a large number of systems.

 \rightarrow We developed a new module to transmit the permission signals and used it to construct the permission transmission line.

SUMMARY

We constructed a radiation safety interlock system for SACLA. To stop the electron beam injection within 16.6 ms, an radiation safety interlock using multi-PLCs and new module were developed. The optical module was able to transmit a permission signal over a long distance to numerous accelerator systems. The radiation safety interlock achieved a response time of less than 6.7 ms. The operation of the system commenced at the end of February 2011.