
Construction of New Data Archive System in RIKEN RI Beam Factory

Misaki KOMIYAMA(misaki@riken.jp), Nobuhisa FUKUNISHI (RIKEN Nishina Center, JAPAN) Akito UCHIYAMA (SHI Accelerator Service, Ltd., JAPAN)

What is Radioactive Isotope Beam Factory (RIBF)?

Conceptual layout of the accelerator chain of RIB

Ion	Energy (MeV/u)	Intensity	Date		
⁴ He	320	1 pµA	09/10/31		
$^{18}\mathrm{O}$	345	1 pµA	10/06/17		
⁴⁸ Ca	345	0.23 рµА	10/05/31		
⁸⁶ Kr	345	33 pnA	07/11/04		
²³⁸ U	345	0.8 pnA	09/12/19		

RIBF Accelerators : - Frequency-variable RIKEN heavy

- Frequency-variable RIKEN heavy-ion linac (RILAC)
- New linac injector (RILAC2) <- New (2010) !
- K70-MeV AVF Cyclotron (AVF)
- * $E(MeV/u)=K(q/M)^2$
- K540-MeV RIKEN Ring Cyclotron (RRC)
- K570-MeV Fixed frequency Ring Cyclotron (fRC)
- K980-MeV Intermediate stage Ring Cyclotron (IRC)
- K2600-MeV Superconducting RIng Cyclotron (SRC) <- World's First!
- © RIBF is a cyclotron-based in-flight facility.
- RIBF accelerators can supply RI beams at energies hundreds of MeV/u over the entire range of atomic masses.
- In 2009, RIBF succeeded in providing heavy ion beams of ²³⁸U with 0.8 pnA at an energy of 345 MeV/u (Injector : RILAC). The beam intensity of ²³⁸U beam acceleration in the RIBF is expected to become 100 times larger than the presentbeam intensity with the use

Development of RIBF Control Data Archive System (RIBFCAS)

Background of the development of RIBFCAS

- a group of several non-EPICS-based systems

For each control system there is a corresponding data archiving system in operation:

- Channel Archiver for EPICS-based system

- MyDAQ2 for non-EPICS-based systems

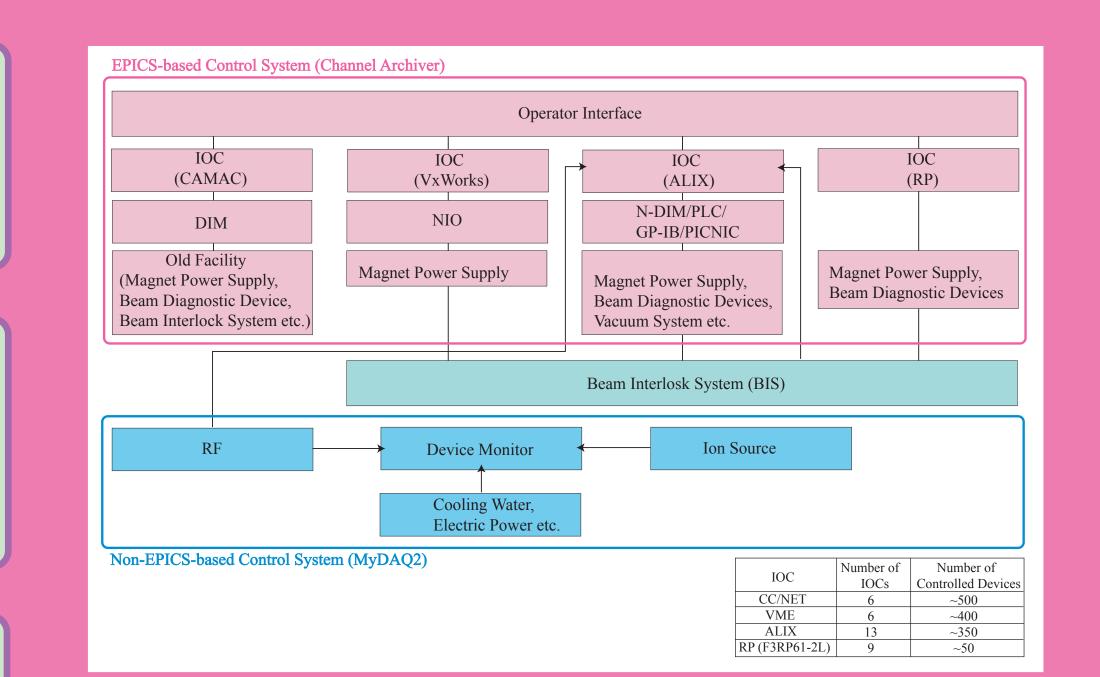
* Channel Achiver is supported by EPICS collaboration. MyDAQ2 was developed by the SPring-8 control group.

Drawback of the coexistence of two data archives :

- Data pocessing is necessary to investigate correlations in the stored data.

e.g.) Notice a gradual decrease in beam intensity

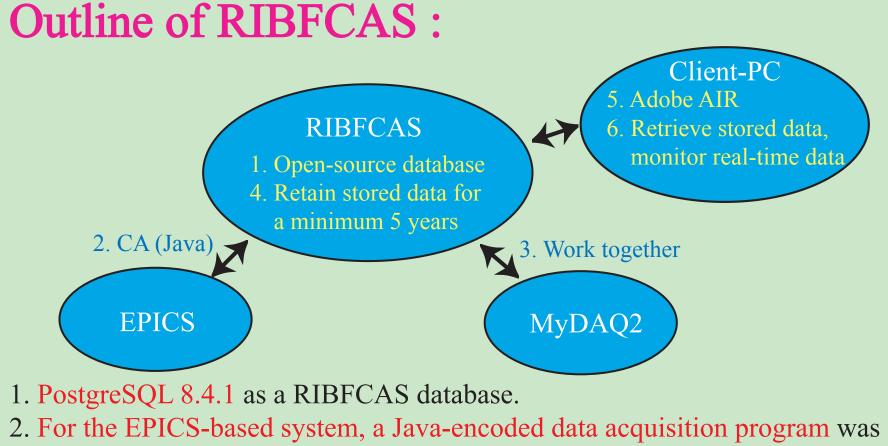
- -> Investigate the correlation between operation parameters
- (e.g. temperature of cyclotron magnets and beam intensity)
- -> Since beam intensity data are stored in the Channel Archiver and magnet temperature data are stored in MyDAQ2, data processing is needed for comparison between the data.


Unify the data archive systems!

Requirement for a unified data archive system :

- Acqire all parameters essential for the stable operation of RIBF accelerators at the required sampling rates.

- Retrieve stored data and monitor real-time data.


However, \triangle Difficult to apply Channel Archiver to our non-EPICS-based systems.

Schematic of RIBF Control System

Develop a new data archive system !

\triangle Difficult to apply MyDAQ2 to eitire control system of RIBF (means handling vast amount of data).

newly developed to communicate with IOCs.

3. For the non-EPICS-based system, RIBFCAS works together with MyDAQ2.4. Retain stored data for a minimum of 5 years.

Data from up to two years previously can be searched immediately from client-PCs at all times; however, older data are retrieved from a backup.

5. The client application was developed on Adobe AIR.

6. The client application has an ability to show both past and rea-time data.

Structure of RIBFCAS:

- © Consists of a database server, an application server, and client-PCs.
- RIBFCAS-DB executes a JCAL-based data acquisition program to collect EPICS data.
- MyDAQ2 currently runs on RIBFCAS-DB and the MySQL database is also managed on this server.
- © RIBFCAS-WEB implements Tomcat version 6.0.
- O Tomcat executes tasks in response to requests from client PCs, and returns retrieved data to client-PCs in XML format.
- On client PCs, applications are executed on Adobe AIR runtime.
- ^O MyDAQ2 data will be marged with the data from the EPICS-based system

erformance test of CA libraries :

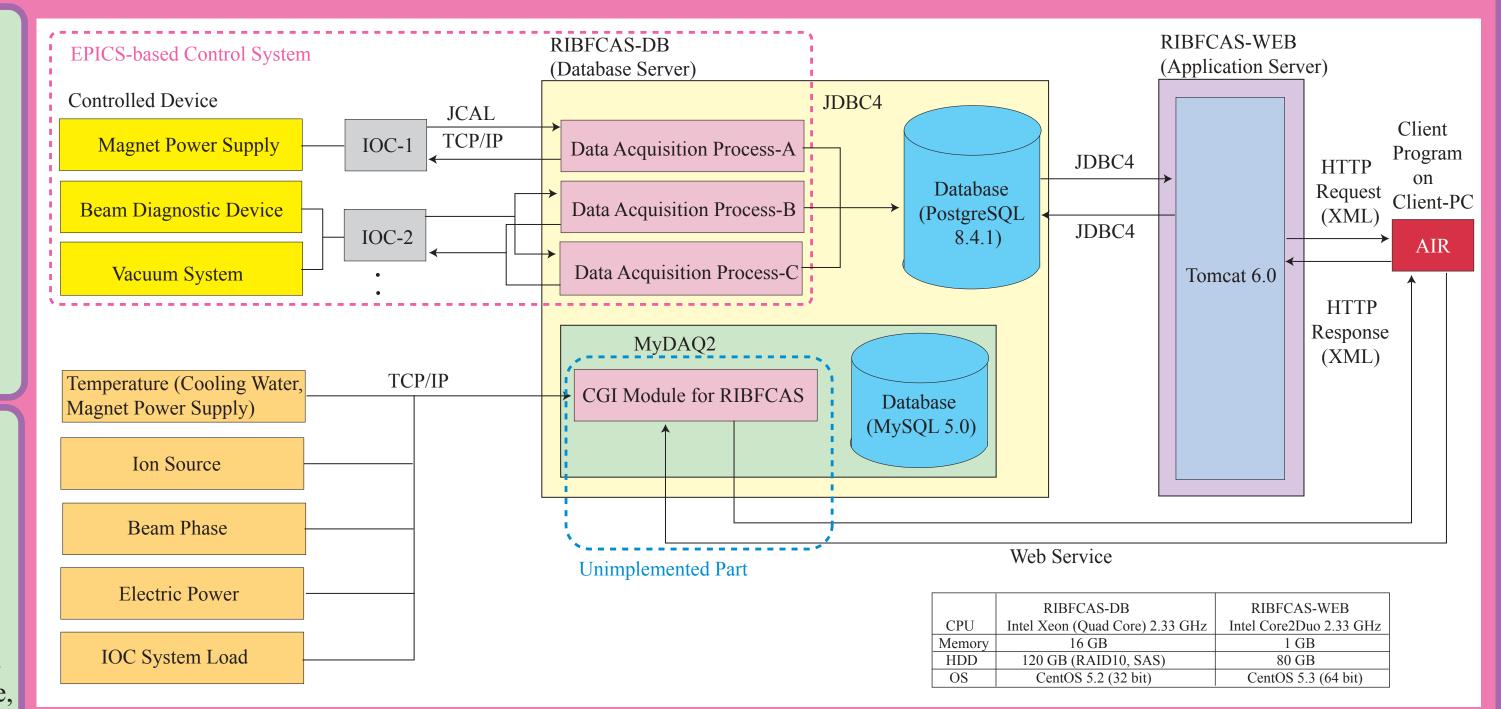
Purpose : to evaluate data acquisition speeds

Target : Java Channel Access (JCA) Java Channel Access Light Library (JCAL) An adopter library for JCA API (JCA-JCAL)

 Performance of the libraries was examined by writing programs with each such that all data could be processed for three chosen IOC types, having approximately 200 parameters apiece.

- One process of the test programs attempted to obtain data every 1 s and a test was concuded by obtaining five successive failures or successes.

- The JCA program was implemented for a single thread, whereas the JCAL program was implemented for multiple threads.


* JCA is supported by the EPICS collaboration. JCAL and JCA-JCAL were developed by the J-PARC control group.

		JCA		JCA-JCAL			JCAL			
IOC	Number of	Execution A		erage	Execution	Average		Execution	Average	
IOC	Parameters	Time (ms)	(ms)		Time (ms)	(ms)		Time (ms)	(ms)	
CC/NET	187	49830	43	Fail	5102	2	Fail	5035	2	Fail
ALIX	198	46986	42	Pass	5104	2	Pass	5042	2	Pass
VME	192	45540	42	Pass	5101	1	Pass	5037	2	Pass

A longer data acquisition time was found for the JCA program due to the introduction of a delay time in order to establish a safe connection between the program and an IOC.
If the JCA program attempts to process data from any chanel of an IOC following a JCA-API call to establish chanel connection, the program receives signals indicating an unconnected status and returns a failure message.
To avoid this scenario, it was necessary to wait for 40 ms after

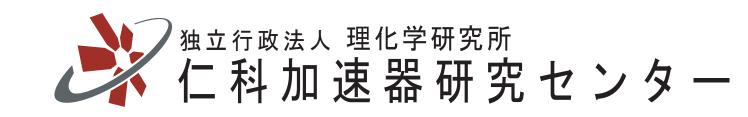
each connection was establoshed. For the case of CC/NET IOC, this delay was increased 100 ms.

- As a consequence, we selected JCAL as the CA library for RIBFCAS.

by using a client application.

Features of the data acquisition program :

- The data collection program is devided into several processes and multi-thread technology is used to execute these processes simultaneously.
 The program structure gives the flexibility to divide existing processes into
- segments or to add new threads for devices introducted to RIBF accelerator complex in future upgrades.
- A list containing a large amount of information collected by RIBFCAS is managed within the XML framework in the program, making it easier to change device data.
 The system has an organized multilayer structure; components such as the database, data collection processes and data collection logic in the database server, Web service and client services are isolated from each other.


Operational status :

- The main RIBFCAS system was completed in FY2010 and performance tests commenced in FY2011.
- The program acquires values for approximately 3000 various component parameters of RIBF from 22 IOCs every 10 s by using 9 separate processes.
- We have succeeded in continuous data acquisition without significant problems occurring.
- The EPICS-based section of RIBFCAS collects 76 GB of data in 2.5 months.
- The client program successfully monitors real-time data and can retrieve data for any period stored in the database.
- The client program displays data over a 24 h interval for a parameter within 10 s, and data over 1 h within 0.3 s. Even more, only 0.05 s is required to recall 24 h data of a parameter once it has been referred to.

RIBFCAS Schematic Overview

Future plan :

- Develop an additional client application that processes the data stored by MyDAQ2.
- Management of the vast amounts of data.
- Selection of appropriate hardware is now in progress.

