
Improving Data Retrieval Rates Using Remote Data Servers
Ted D'Ottavio, Bartosz Frak, Seth Nemesure and John Morris, BNL, Upton, NY, USA*

The power and scope of modern Control
Systems has led to an increased amount of
data being collected and stored, including
data collected at high (kHz) frequencies.
One consequence is that users now
routinely make data requests that can
cause gigabytes of data to be read and
displayed. Given that a users patience can
be measured in seconds, this can be quite
a technical challenge. This paper explores
one possible solution to this problem - the
creation of remote data servers whose
performance is optimized to handle

context-sensitive data requests. Methods
for increasing data delivery performance
include the use of high speed network
connections between the stored data and
the data servers, smart caching of
frequently used data, and the culling of
data delivered as determined by the
context of the data request. This paper
describes decisions made when
constructing these servers and compares
data retrieval performance by clients that
use or do not use an intermediate data
server.

ABSTRACT DATA CULLING
Virtually every request, which passes through the Data
Server is subjected to the culling algorithm. This algorithm
was designed to cut down high volume, time domain data
to more manageable, lower rate datasets, which look
virtually the same on the users’ monitors as their original,
high frequency counterparts. This algorithm was originally
implemented in our C++ plotting library and used with
great success in the LogView application. A Java version,
which was incorporated in the Data Server, extends the
original design by parallelizing the processing pipeline. This
implementation allows the server to process up to a billion
points per second and adds the ability to cull all numerical
data types (The original design
culled only single precision
floating point values, which
are native to the plotting
tools). Client applications issue requests over a

RESTful based API to the Data Server. The
server retrieves a file list from one or more
run databases. These individual files are
read from a network store(s), processed
(culled) and cached in parallel in the same
VM or on one or more satellite server. The
complete or partial results are transformed
to XML or JSON and shipped back the
client. In the simplest case, which involves
complete reads, the requests are
completely stateless, however minimal
state information has to be maintained for
clients, which ask for partial results.

ARCHITECTURE

Logger data, in either its processed and
raw forms exists and can be retrieved
from one of four locations. At the
highest level, the Front Facing Request
Cache (L0) returns processed results
for requests it had already seen. Every
request, which falls through the L0
cache is dispatched through a local or
remote object cache (L1), which either
returns immediately with the raw data
or issues a new read request to a
remote disk store. In addition to the L1
object cache, local server instance has
a transparent access to a SSD based
cache (L2), which holds serialized,
memory-store evicted instance
fragments. At a level above, regardless
of its spatial location, all data
fragments have to go through a
transform phase, which currently simply
cuts down on their density, by
subjecting them to the culling
algorithm.

Throughput
(MB/sec) Speedup

Client to Remote
 Disk-store 5.4

Client through Data Server to
Remote Disk-store 146 27x

Client through Data Server to
SSD Cache 245 45x

Client through Data Server to
RAM 968 180x

RESULTS

Test suite used to compile the following result table
included a combination of both high and low frequency
data reads over varying periods of time. Throughput was
measured only for requested data, i.e. additional
information stored in the files, but not explicitly asked for
was discarded and not used in the rate calculations. The
final throughput was calculated by dividing the data
volume by the sum of the extract, transform, load and
client processing times. Individual tests have been
repeated multiple times to minimize the any rate
variances.

*Work	 supported	 by	 Brookhaven	 Science	 Associates,	 LLC	 under	 contract	 no.	 DE-‐AC02-‐98CH10886	 with	 the	 U.S.	
Department	 of	 Energy	

