
THE TIMING MASTER FOR THE FAIR ACCELERATOR FACILITY

R.C. Bär, T. Fleck, M. Kreider, S. Mauro
GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

Abstract

One central design feature of the FAIR accelerator com-
plex is a high level of parallel beam operation, imposing
ambitious demands on the timing and management of ac-
celerator cycles. Several linear accelerators, synchrotrons,
storage rings and beam lines have to be controlled and re-
configured for each beam production chain on a pulse-to-
pulse basis, with cycle lengths ranging from 20 ms to sev-
eral hours. This implies initialization, synchronization of
equipment on the time scale down to the ns level, inter-
dependencies, multiple paths and contingency actions like
emergency beam dump scenarios.

The FAIR timing system will be based on White Rab-
bit [1] network technology, implementing a central Tim-
ing Master (TM) unit to orchestrate all machines. The TM
is subdivided into separate functional blocks: the Clock
Master, which deals with time and clock sources and their
distribution over WR, the Management Master, which ad-
ministrates all WR timing receivers, and the Data Master,
which schedules and coordinates machine instructions and
broadcasts them over the WR network.

The TM triggers equipment actions based on the trans-
mitted execution time. Since latencies in the low µs range
are required, this paper investigates the possibilities of par-
allelisation in programmable hardware and discusses the
benefits to either a distributed or monolithic timing master
architecture. The proposed FPGA based TM will meet said
timing requirements while providing fast reaction to inter-
locks and internal events and offers parallel processing of
multiple signals and state machines.

FUNCTIONAL BLOCKS

Clock Master

The Clock Master is the topmost White Rabbit timing
node in the system. It is the time and clock reference for all
connected nodes [1] and is itself connected to a UTC source
(GPS) and FAIRs RF clock system, BuTiS. It propagates
absolute time and its clock down the layers of the timing
network by means of a modified Precision Time Protocol
(PTP) and synchronous GigaBit Ethernet.

Management Master

In the Management Master, all administrative tasks of
the timing network are concentrated. There are multiple
services running in this unit, allowing it to carry out the
following functions:

➠ Dynamic Host Configuration Protocol (DHCP) Server

➠ Rapid Spanning Tree Protocol (RSTP) Root

➠ Simple Network Management Protocol (SNMP) Mas-
ter

A standard DHCP server process is used to assign IP
addresses to all nodes present in the timing network.

The SNMP Master is used to poll network switches for
information about their current status in order to obtain a
global status image of the timing network. It can also be
used by administrators to configure said switches.

Since the FAIR Timing Master will broadcast command
messages, the RSTP protocol is used to make the routing
information for the timing network loop free. This is nec-
essary because a loop in the routing tables would immedi-
ately lead to an infinite generation of network traffic.

Data Master

The Data Master for the FAIR accelerator deals with var-
ious different tasks. It possesses a high end CPU running an
OS for easy interfacing to the control system, compatibil-
ity to FAIRs standard libraries and raw processing power as
well as a Field Programmable Gate Array (FPGA) for par-
allelism, deterministic behavior and ultra low IO latency.

Figure 1: Sequences in a production chain [2].

The Data Master itself subdivided into three parts:

CPU/API Block Its CPU is fed by the LHC Software
Architecture (LSA) with machine parameters derived from

WEPMS011 Proceedings of ICALEPCS2011, Grenoble, France

996C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Hardware



physical requirements for beam production chains. These
parameters are converted into sequence programs (Fig. 1),
compiled and uploaded to the FPGA of the Data master.

FPGA/SoftCPU Cluster These programs are run in
parallel on SoftCPU macros residing in the FPGA. They
deal with sending out machine events paired with an exe-
cution time to WR nodes, reacting to interlocks and mutual
synchronisation. At the moment, 32 of these Soft CPUs are
foreseen in the Data Master, able to carry out 32 tasks full
parallel with IO service times of less than 50ns.

FPGA/Event Concentrator An event concentrator
macro in the data master will act as a bridge to the WR
network. Its primary functions are aggregation of events
into Ethernet Frames and to schedule transmission of these
event messages over the timing network so they arrive on
time at the respective nodes.

DESIGN CONSIDERATIONS

Why not just a High End CPU?

Modern multi-core CPUs are unsuitable because they
cannot they be made deterministic enough for our purpose.
This is not inherent in their design but stems from the fact
that they need a full blown OS to use most of their features,
not to mention RAM management. They also have compar-
atively slow IO handling. Even with high clock rates and
vast amount of processing power at their disposal, their In-
terrupt Service Request (ISR) times are in the low millisec-
ond range plus additional penalties from IO resource arbi-
tration. While there are approaches which enforce a task
based scheduling to introduce determinism, they still suffer
heavily from the IO bottleneck of the carrier board.

High end multicore CPU

+ Performance clock for clock
+ Clock rates
− Determinism with (needed) OS

− multithread scheduler
− indirect memory management
− garbage collection

− ISR times range in milliseconds
− IO Bottleneck

➠ Not suitable

Why no Embedded CPU with a Real Time Oper-
ating System?

While being considerably faster and more deterministic
at IO and interrupt service times than high end CPUs, the
ISR of embedded CPUs with real-time OSs still jitter in the
microsecond range and show considerable lag under load,
as shown in Figure 1.

Table 1: RTOS Latency Measurement Results [3].

Interrupt Latency Context Switching
(µs) (µs)

max avg ± max avg ±
Idle System
RTL 13.5 (1.7 ± 0.2) 33.1 (8.7 ± 0.5)
RTEMS1 14.9 (1.3 ± 0.1) 16.9 (2.3 ± 0.1)
RTEMS 15.1 (1.3 ± 0.1) 16.4 (2.2 ± 0.1)
vxWorks 13.1 (2.0 ± 0.2) 19.0 (3.1 ± 0.3)
Loaded System
RTL 196.8 (2.1 ± 3.3) 193.9 (11.2 ± 4.5)
RTEMS1 19.2 (2.4 ± 1.7) 213.0 (10.4 ± 12.7)
RTEMS 20.5 (2.9 ± 1.8) 51.3 (3.7 ± 2.0)
vxWorks 25.2 (2.9 ± 1.5) 38.8 (9.5 ± 3.2)

Embedded CPU with Real time OS

+ Fast IO
+ More deterministic
− ISR jitter
− lag peaks under load
− scalability

➠ Not suitable

A multi MCU approach to decreases IOs per MCU to be
serviced and processor load would suffer from poor possi-
bilities for process synchronisation between MCUs and lag
from resource arbitration.

Why not Pure HDL on FPGAs?

Programmable hardware was the next option to inves-
tigate. While being extremely fast and the only system
group capable of massive parallel processing, there are also
disadvantages to consider. The main problem with HDL
modules is a distinct lack of flexibility, since all sequential
behavior needs to implemented as state machines. Those
can only change their state in reaction to a set of external
signals and their own state. This would severely increase
the effort for conversion of LSA output and also mean that
on the fly changes of functionality are out of the question.
However, there is another option when using HDL macros.

Pure HDL circuits

+ completely deterministic
+ ultra low IO latency
− interfacing
− flexibility
− versatility
− design effort for all scenarios

➠ Not suitable

Proceedings of ICALEPCS2011, Grenoble, France WEPMS011

Hardware 997 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Why SoftCPUs?

SoftCPUs, little blocks of Hardware Description Lan-
guage (HDL) code resembling embedded CPUs. They
can offer almost all of the convenience and flexibility of a
real embedded CPU, while also being closely connected to
other FPGA circuits with extremely low latency. If there is
no necessity for a MMU or the intention to use standard li-
braries, this is the best compromise between flexibility and
ultra low latency design. Multiple instances with their own
dedicated memory can speed up the design even more.

SoftCPU Cluster

+ completely deterministic
+ ultra low IO latency
+ interfacing
+ flexibility
+ versatility

➠ Best candidate

ARCHITECTURE

Choice of SoftCPUs

In the course of our work, many SoftCPUs have been
evaluated [4]. We decided against closed source variants
to keep the possibility of extending the macro with custom
instructions. There is about a dozen open source SoftCPUs
available today. The main criteria were speed, footprint,
availability of toolchains and community/developer sup-
port. Our choice was the Lattice Micro32, a 32 Bit RISC
processor macro running at about 150 MHz. While being a
complete RISC processor with instruction and data caches
and an interrupt handler, it has a low FPGA footprint of
about 2000 logic cells. Toolchains are available, including
a GNU cross compiler for Ansi C. We have also added sup-
port for the GNU debugger via JTAG interface. An average
modern PFGA can offer around 250000 LUTs, four times
more than enough to instantiate a SoftCPU cluster with 32
modules. Internal FPGA memory is much more likely to
be the limiting factor, though. High end FPGAs contain
>2 MB of internal memory. Assuming 2.5 MB, each of
the SoftCPUs would get around 80kB of memory. This
is more than sufficient for caches and program execution.
The GNU debugger claimed about 1 kB of memory on our
LM32 testbed.

Using Multiple SoftCPUs

With a One-SoftCPU-per-task policy, their IO handlers
can be blocking and are not forced to use interrupts, elimi-
nating time consuming context changes. Each SoftCPU has
its own little memory controller, which completely elimi-
nates resource arbitration lag. For fastest synchronisation
of their programs, an n ∗ n sync matrix will also be imple-
mented.

Figure 2: FPGA based SoftCPU Cluster [2].

CONCLUSION

After evaluation of timing requirements [2] and CPU,
MCU and FPGA system properties, it showed that a mixed
CPU/SoftCPU approach for the Data Master would be the
best choice for FAIR. It is a very fast, flexible, scalable,
easily extendable and future proof solution.

OUTLOOK

In the course of 2012, the design will be subjected to a
real world test scenario. A first prototype of the FAIR Tim-
ing Master will be used in the testing and commissioning of
the first machine module to be deployed for FAIR, the anti-
proton linear accelerator. Productive systems are planned
to be put into service at GSI/FAIR in 2016.

REFERENCES

[1] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, G.
Gaderer, “White Rabbit: Sub-Nanosecond Timing Distribu-
tion over Ethernet”, IEEE Precision Clock Synchronization
for Measurement, Control and Communication 2009, pp1-5,
Brescia, October 2009.

[2] M. Kreider, “The FAIR Timing Master: A Discussion of
Performance Requirements and Architectures for a High-
precision Timing System”, THCHMUST06, ICALEPS’11,
Grenoble, France, 2011.

[3] T. Straumann, “Open source real-time operating systems
overview”, ICALEPS’01, San Jose, USA, 2001.

[4] W.W. Terpstra, “The Case for Soft-CPUs in Accelera-
tor Control Systems”, 2011, ICALEPS’11, THCHMUST05,
ICALEPS’11, Grenoble, France, 2011.

WEPMS011 Proceedings of ICALEPCS2011, Grenoble, France

998C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Hardware


