
A TESTBED FOR VALIDATING THE LHC CONTROLS SYSTEM CORE
BEFORE DEPLOYMENT

J. Nguyen Xuan, V. Baggiolini, CERN, Geneva, Switzerland

Abstract
Since the start-up of the LHC, it is crucial to carefully

test core controls components before deploying them
operationally. The Testbed of the CERN accelerator
controls group was developed for this purpose. It contains
different hardware (PPC, i386) running various operating
systems (Linux and LynxOS) and core software
components running on front-ends, communication
middleware and client libraries. The Testbed first
executes integration tests to verify that the components
delivered by individual teams interoperate, and then
system tests, which verify high-level, end-user
functionality. It also verifies that different versions of
components are compatible, which is vital, because not all
parts of the operational LHC control system can be
upgraded simultaneously. In addition, the Testbed can be
used for performance and stress tests. Internally, the
Testbed is driven by Atlassian Bamboo, a Continuous
Integration server, which builds and deploys
automatically new software versions into the Testbed
environment and executes the tests continuously to
prevent from software regression. Whenever a test fails,
an e-mail is sent to the appropriate persons. The Testbed
is part of the official Controls System development
process wherein new releases of the controls system have
to be validated before being deployed operationally.
Integration and system tests are an important complement
to the unit tests previously executed in the teams. The
Testbed has already caught serious bugs that were not
discovered by the unit tests of the individual components.

MOTIVATION
As described in the previous publication [1], the

accelerator controls system can roughly be described as 3
tier architecture, mainly written in Java and C/C++. It is
composed of many layers developed by separate teams.
Along with software, hardware has also been evolving
and nowadays the operational environment consists of
different hardware architecture running different OS at
the same time.

Upgrades are very challenging since many components
and teams are involved. There is no place for failure,
since a beam downtime of the LHC itself only costs about
50’000CHF/h.

The different components are well tested individually
with unit tests, but without any systematic function and
integration tests. This is the reason why we started the
Testbed project.

THE TESTBED

Overview
The main goal of the Testbed is to test components

together before they are deployed into operations and
validate a working set of versions. This practice is part of
an overall development process to which also the SIP
initiative belongs [2].

The scope of the Testbed is to test general purpose
controls components. It does not include GUIs, or devices
with a specific function, such as a power converter or a
beam loss monitor. The tests focus on functional aspects,
mainly integration and system testing, but also include
verification of backward compatibility and regression
testing. Some tests validate the reaction to failures.
Failure can be provoked artificially by shutting down
services in the Testbed, and that without disturbing the
operational environment. The Testbed is composed of
several different machines, representing the variety of
hardware and operating systems used in the CERN
accelerator complex. The core software components of
the controls system are deployed on these machines and
clients are emulated, a detailed description follows in the
next section.

Diving into Details
The Testbed tries to mimic the operational environment

of the core components (Fig. 1).
Starting from the bottom, FECs (Front-End Computer)

are needed to send simulated data and are synchronized
by the timing system. Both hardware types from
operations are integrated: PPC with LynxOS and i386
with Linux. On these FECs, two implementations from
different generation are used: the PS’s GM (General
Module) and the LHC’s FESA (Front End System
Access).

The middle-tier is composed of common middleware
services which are:
 the CCDB (Controls Configuration Database)

containing data essential for most of the components
 a JMS (Java Messaging System) broker to pass

messages
 RBAC (Role Based Access Control) security to

restrict some actions to certain users
 CMW (Controls Middleware) services as the

directory server which provides the different server
addresses and the proxy which protects FECs from
too many connections

Finally at the top, communication libraries with APIs like
JAPC (Java API for Parameter Control) or RDA (Remote
Device Access) commonly used by clients are tested.

Proceedings of ICALEPCS2011, Grenoble, France WEPMS003

Quality assurance 977 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

This setup allows calls from client APIs with various
paths and properties, as fetching a value from a device
directly or through the proxy, enabling RBAC
authentication, and so on.

THE TESTS
Type of Tests

As already mentioned, the scope of the Testbed is
functional and system testing. Tests validate (1) the
typical primary functions and interactions the controls
system provides, (2) the correct reaction of the controls
system to typical errors (e.g. device failures) and (3) the
backward compatibility of new components.

An example of primary functionality is device access.
All controls devices implement a device/property model.
The most basic interactions with such a device are set, get

 and subscription on the properties. They can be triggered
at various API levels, at the lower level RDA API and at
the higher level JAPC API. To validate this functionality
a test first reads the property value, then sets the property
to a new value, and finally checks that the new value is
published through the subscription mechanism.

Correct reaction to failures can be tested with a special
device class that simulates typical device errors, e.g.
sending wrong data or not responding at all. Tests check
amongst other things that correct exceptions with the right
error messages are thrown.

Backward compatibility is checked by deploying the
new and the old version (e.g. of the communication
middleware) into the Testbed, and checking that they
interoperate correctly. In general, different version
combinations that may occur are tested, e.g. different
versions of FESA with different versions of the
middleware components.

Test Organization
The order in which tests are executed is important to

make sure we get accurate test results.
Before running the actual function tests, the Testbed

runs a series of self-tests, called preconditions tests. They
verify that all Testbed components are active and
configured as expected. For example, they check if a
device is online, if the timing works, if the directory
service and the database are accessible. If any of the
preconditions fails, the Testbed stops, waiting for the
defective components to be fixed. Otherwise the process
continues and the actual function tests are executed.
Preconditions tests are important to keep the test results
clean and correct; they make sure that functional tests
only fail on real malfunctions in the controls system, not
because of misconfigured Testbed components.

The set of tests is also run in a well-defined, bottom-up
sequence. Because a higher-level test will involve all
those previous components, we first make sure that the
lowest components are fully operational before running
tests on higher components. First the tests targeting low
level components are run, such as tests on the timing
system, the directory service or the proxy. If a test on the
proxy fails, then tests from JAPC are likely to also fail.
By testing the proxy before JAPC, we ensure that a fault
in the proxy is recognized as such, and not as a JAPC
fault.

Writing and Maintaining Tests
Tests should be written by the teams who provide the

library or the component or by a team dedicated to testing
in order to be able to keep up with the project changes or
to simply maintain the tests. But in practice the teams
focus more on development of new features, so the tests
are often written by third persons following the
specifications.

The Testbed administrator is in charge of verifying and
integrating new tests into the test suite. It happens that
bad written tests give wrong errors result, but they are
fairly easy to spot and quickly fixable. Those errors are

Figure 1: The Testbed structure.

WEPMS003 Proceedings of ICALEPCS2011, Grenoble, France

978C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

habitually detected at development time.
Tests are updated when a new component with non

backward compatible changes are deployed. Usually the
new deployed components make the tests fail, so unless
the tests are changed, they will keep failing.

Running Tests
Tests are run by our continuous integration server

Atlassian Bamboo [3]. Normally, Bamboo is used as
follows. A so-called Bamboo test plan monitors a source
repository and triggers a build process when source code
changes are committed by some developer. A build
process checks out the source code, compiles the sources
and runs the unit tests. If all this succeeds, a cascade of
other dependent test plans can be triggered. If it fails,
Bamboo sends typically an e-mail to the owner of the test
plan and to the committer. Bamboo displays the results of
unit tests very nicely with graphs, relevant statistics and
metrics, and the detailed logs of the whole execution are
available. A history of all test plan executions is kept as
well. Within a test plan, several stages can be defined to
divide a build into several steps. These steps are run
sequentially and we use them to run the tests in a defined
bottom-up sequence (Fig. 2).

Figure 2: Bamboo’s stages.

We use Bamboo to run the test suite of the Testbed
every two hours. Since we use the JUnit framework to
write our tests, full reports are also shown on Bamboo.
Keeping the logs from each build is very handy because it
happens that an error appears only once in a while, not at
each run.

Using Bamboo to drive the Testbed has its limitations,
the automatic deployment mechanism has to be scripted
by hand (more about it in the next section), and setting up
the environment such as JDK versions before running the
tests is not obvious.

Automatic Deployment
As the Testbed is used for beta-testing, it is important

that bugfixes can be deployed easily and quickly. We
therefore invested in automatic deployment directly from

the sources. Whenever a new component is ready, it is
automatically built and deployed into the Testbed.

We use SVN branches to identify the source code that
should be deployed into the Testbed. If Bamboo detects a
commit to a specific branch, it automatically builds that
branch and all the dependent projects as well. The
resulting build artifacts are stored in a special binary
repository, which eventually contains a set of components
that have been built together. We added a post build
mechanism to Bamboo, based on shell scripts, which
deploys the executable artifacts into the Testbed. We use
Apache Maven [4] for building, which works out-of-the
box for Java. For C/C++ products, we have developed a
Maven-compatible build system based on the Maven
NAR plugin [5] that provides similar functionality as
available in Java.

THE CASE OF CMW PROXY
This section explains in more details one particular

component and the corresponding tests executed by the
Testbed. The CMW proxy is a separate process used to
shield devices on a front-end computer (FEC) from too
many client requests. When several clients subscribe to a
device through the proxy, it will manage all the
subscriptions, but only do one subscription to the device.
At first thought, the proxy seems to be a pretty simple
piece of software, but in reality its functionality is rather
tricky to implement, because it needs to be transparent to
the clients and has many constraints due to RBAC
security or FECs’ implementation.

The middleware team, which is responsible for the
proxy, updated a few of their C++ products in the release
candidate repository, including the RDA communication
library. They needed to deploy a new version of the
proxy, which depends on RDA. Using the automatic
deployment mechanism, the new proxy was updated and
the tests worked fine during the first runs. But the next
day, the tests were failing, because some proxied devices
did not properly respond to requests. It turned out that the
devices all worked fine, but the proxy was in a faulty
state. We finally saw that this problem was caused by a
newly introduced bug in RDA which did not properly
close the connections. The Testbed had to run for 5 hours
in order to reproduce this bug.

BENEFITS
The Testbed has been running for one year now and has

already shown the following benefits.

More Confidence
Developers using the Testbed feel more confident in

their product. The Testbed is an important complement to
the unit tests, not a replacement. By running a series of
tests after new software version, the Testbed ensures that
a change does not break the core functionality of the
controls system. The Testbed already caught several bugs
and revealed few inconsistencies. The above example of

Proceedings of ICALEPCS2011, Grenoble, France WEPMS003

Quality assurance 979 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

the CMW proxy product took several days to fix this bug
and therefore saved some hours of beam downtime.

The Testbed is vital in our environment where many
developers belonging to several teams contribute to the
controls system. If one team provides a new version of
their component, everyone can see immediately and well
before operational deployment whether the controls
system still works.

Better Understanding
The accelerator controls system is complex and hard to

understand as a whole entity, hence the Testbed helps in
that direction by simulating requests done operationally
from the CCC. One can think of the RBAC
implementation in combination with the proxy, in specific
cases the proxy is overriding the client’s permission. First
we thought that it was a bug, but in fact it was done on
purpose to force users to use the proxy.

Saving Money
The Testbed allows to validate the controls system core

before it is deployed in the real accelerator complex. The
overall cost of the Testbed (hardware and man power) is
small compared to the cost of LHC downtime. Without
having done a scientific analysis, we estimate that cost of
the downtime avoided by the Testbed outgrows the cost
of the Testbed itself.

Small Laboratory
The Testbed is a down-scaled replication of the

accelerator controls system, which can serve as an
experimental laboratory for many purposes. It was
already used for early validation of new systems in an
early stage of development. For example the new logging
system which involves front-ends, middleware, the proxy
and the JMS broker.

Another example is the new build and release tool we
are working on, based on Apache Maven. It was first used
in the Testbed, before even giving it to any of our Java
and C/C++ developers.

FORESEEN IMPROVEMENTS
The most important improvement is to write more and

better tests. Our developers should write functional tests
in the same natural manner as they already write unit
tests. We also have to extend test coverage to validate not
only main functionality but also more advanced and less
frequently used tests. It still happens (and we cannot
avoid) that some bugs are discovered during operations.
In these cases we need to enforce that a test is written to
expose this bug.

As a second priority, we intend to extend the scope of
the Testbed in several ways.

We will add new systems to be validated. At the
moment, only the lower layers of the controls system are
deployed into the Testbed. We plan to add higher-level
core components, such as the Software Interlock System
(SIS) [6], the LSA/InCA [7] system and the high-level

settings management and controls system for our
accelerators.

We will provide several different Testbed
configurations with different versions of hardware,
operating systems, Java virtual machines, and controls
components. Functionality is needed to automatically re-
configure the Testbed and re-deploy the controls system
on it.

Finally, we might open up the Testbed to other types of
tests than mere functional tests, and include performance
and scalability tests.

REFERENCES
[1] N. Stapley et al., an integration testing facility for

the CERN accelerator controls system,
Proceedings of ICALEPCS’09 , Kobe, Japan.

[2] K. Sigerud et al., The Software Improvement
Process – Tools and Rules to Encourage Quality,
Proceedings of ICALEPCS’11, Grenoble, France.

[3] Atlassian Bamboo,
http://www.atlassian.com/software/bamboo

[4] Apache Maven, http://maven.apache.org
[5] J. Nguyen Xuan et al., A C/C++ build system based

on maven for the LHC controls system,
Proceedings of ICALEPCS’11, Grenoble, France.

[6] J. Wozniak et al., Software Interlock System,
Proceedings of ICALEPCS’07, Knoxville, USA.

[7] S. Deghaye et al., Cern Proton Synchrotron
Complex High-Level Controls Renovation,
Proceedings of ICALEPCS’09, Kobe, Japan.

WEPMS003 Proceedings of ICALEPCS2011, Grenoble, France

980C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Quality assurance

