
A GENERAL DEVICE DRIVER SIMULATOR TO HELP COMPARE REAL
TIME CONTROL SYSTEMS

 M.Mohan, European Gravitational Observatory, Cascina (Pisa) , Italy.

Abstract
 Supervisory Control And Data Acquisition systems
(SCADA) such as Epics, Tango and Tine usually provide
small example device driver programs for testing or to
help users get started, however they differ between
systems making it hard to compare the SCADA. To
address this, a small simulator driver was created which
emulates signals and errors similar to those received from
a hardware device. The simulator driver can return from
one to four signals: a ramp signal, a large alarm ramp
signal, an error signal and a timeout. The different signals
or errors are selected using the associated software device
number. The simulator driver performs similar functions
to Epic’s clockApp [1], Tango’s TangoTest and the Tine’s
sinegenerator but the signals are independent of the
SCADA. A command line application, an Epics server
(IOC), a Tango device server, and a Tine server (FEC)
were created and linked with the simulator driver. In each
case the software device numbers were equated to a
dummy device. Using the servers it was possible to
compare how each SCADA behaved against the same
repeatable signals. In addition to comparing and testing
the SCADA the finished servers proved useful as
templates for real hardware device drivers.

INTRODUCTION
 The current vacuum system at EGO [2] is controlled by
os9 crates and uses custom software. The software is used
to monitor values such as temperature, pressure and
displacement. This control system is now being updated
for Advanced Virgo. The os9 crates will be replaced by
PLCs and a new SCADA will replace the custom
software. The SCADA chosen may also be used for other
systems at EGO.
 Integration of new devices into a SCADA requires the
hardware be setup correctly and the protocol (such as
modbus) be implemented correctly. Rather than setup a
PLC and test different conditions a small library was
written to simulate signals. The simulator library
generates simple scalar signals and errors similar to those
which could be generated by a PLC.

Epics, Tango and Tine SCADA
 Epics, tango and tine SCADA were chosen for
comparison as they are all stable mature systems which
are actively supported and developed. They are all open
source projects which run on multiple platforms. The
preferred platform at EGO is linux and both epics and
tango have been recently packaged for Debian linux using
the aptitude [3] package manager which eases installation
and updating.

 Epics is the most popular and widely supported SCADA
followed by tango and then tine. Larger support implies
stability [4] and a larger supply of pre-written device
servers whereas smaller projects tend to be more flexible
and use more advanced techniques.
 The architectures of the SCADA investigated are similar
and a generalised SCADA view is illustrated in Figure 1.
Information from devices such as PLCs D1, D2, D3, and
D4 is packaged and put on “software bus” by a Device
Server. Different tools under the control of an operator are
used to monitor and control the devices. Simulator signals
were used in place of signals from D1, D2, D3 and D4.

Figure 1: SCADA requirements.

SIMULATOR DEVICE SIGNALS
 Four generated signals which are named according to
the type of signal returned are shown in Table 1.

Table 1: Simulator Device Names

Device Number Device Name

1 test/simulator/ramp

2 test/simulator/rampx2

3 (default) test/simulator/error

4 test/simulator/timeout

 The test signal is selected using the Device Number in
the same way a modbus value is read using its modbus
address. The signals are…

1. ramp: A ramp which rises from 0 to 59.999999
every minute.

2. rampx2: A large ramp which rises from 0 to
119.999998 every minute. Used to test alarms.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS030

Software technology evolution 863 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

3. error: An error signal set at 60. Used to test how
the SCADA reacts if the PLC returns a fault (-1).

4. timeout: A timeout signal. Used to emulate when
there is no response from a PLC.

 The signals are shown in figures 2, 3 and 4 using epics,
tango and tine data displays.

Figure 2: Simulator Signals using epics striptool.

Figure 3: Simulator Signals using tango atkmoni.

Figure 4: Simulator Signals using tine JClient.
“Histogram view”. There are several view types in Tine.

How Simulator Signals are Generated
 A small c program was used to generate the four signals
shown in Figure 2, 3 and 4. The function to generate the
signals is shown in Figure 5.

…
int GetAmplitude(int DeviceNumber, double *Amplitude)
{
 struct timeval tv; struct timezone tz;
 struct tm *tm;
 gettimeofday(&tv, &tz); tm = localtime(&tv.tv_sec);

 // *Amplitude= Seconds time of system clock
 *Amplitude=((double)((1000000*tm-
>tm_sec)+tv.tv_usec)/1000000); // 0-59.999999

 int ErrorValue =0; // default 0=ok

 switch (DeviceNumber)
 {
 case 1: // 0-59.999999 = ramp
 break;
 case 2: // 0-119.999998 = rampx2
 *Amplitude=*Amplitude*2;
 break;
 case 4: // =timeout
 sleep(99999999);
 break;
 default: // =error
 *Amplitude=60;
 ErrorValue=-1; // -1 = Error
 break;
 }
 return ErrorValue; // return 0 or -1
}
…

Figure 5: C function to generate Simulator signals.

 A library called “libSimulator” was made using the code
in Figure 5 and linked with SCADA device servers.

CREATING DEVICE SERVERS

What is a Device?
 The concept of the device is at the heart of epics, tango
and tine. A device can be considered a container of
hardware data and an analogy for this is a shipping
container because the devices all look the same although
the contents are different. Like devices shipping
containers also have unique names [3].
 The “device container” in Figure 6 is labelled with static
information such as the name of the device, units of
measurement and alarm limits. The device is packaged by
the device server which updates dynamic information in
the device. When the device server is running the device
is updated with dynamic content such as Amplitude, state
and timestamp. This “device container” is then put on its

WEPKS030 Proceedings of ICALEPCS2011, Grenoble, France

864C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

respective software bus (epics, tango or tine) where it is
identified by its unique name.

Figure 6: Example: Device test/simulator/rampx2 is
updated periodically and results put on software bus.

Integrating Devices in Device Servers
 The source code for the software device servers were
generated using the template tools makeBaseApp, pogo
and srvwizard which are supplied by epics, tango and tine
respectively.

Figure 7: libSimulator test setup.

 The device servers were linked to the libSimulator
library Figure 7 and device signals generated by calling
the function GetAmplitude Figure 5. The code added to
device servers to read the devices is similar to the
following.

C Command line
if(GetAmplitude(DeviceNumber,&Amplitude)==-1)
printf(“Error\n”);

Epics
if(GetAmplitude(DeviceNumber,&Amplitude)==-1)
recGblSetSevr(pai,STATE_ALARM,MAJOR_ALARM);

Tango
if(GetAmplitude(DeviceNumber,&Amplitude)==-1)
set_state(Tango::FAULT);

Tine
if(GetAmplitude(DeviceNumber,&Amplitude)==-1)
SetAlarm(SIMEQM_TAG,devnr,512,NULL);

 The codes above read the Amplitude and sets an alarm
if an ErrorValue (-1) is returned. This means the SCADA
always set an error alarm for device 3
(test/simulator/error).

 The default code generated for epics and tine hung on
the timeout from device 4 (test/simulator/timeout)
because the device server blocks waiting for a reply.
Tango however by default sets an alarm state “timeout”
and continued to read the other devices if no reply came
within 3000 ms. There are several methods to overcome
the timeout in epics and tine such as defining each device
as thread or using epics async but this involves modifying
the default generated code.

 For real devices pre-written device servers can be
downloaded from the SCADA websites and some
hardware devices even come with inbuilt device servers
such as the F3RP61 PLC from yokogawa ref [6] which
includes an inbuilt epics IOC.

CONFIGURING DEVICES
 SCADA configuration tools are used to input static
information for devices such as names and alarm
thresholds. For the simulator the Device number 1, 2, 3 or
4 must be associated with a unique device name. Epics
naming is not compulsory and tango and tine use similar
formats so it was possible to use the same Simulator
signals names in all SCADA see Table1.

Epics
 Configuration information for epics devices are stored
in ASCII “.db” files and modified using a text editor. This
device information is called a record. In the example in
Figure 8 the field HIHI is used to set max alarm threshold
to 100.

record(ai, "test/simulator/rampx2")
{
 field(DESC, "Signal ramp 0 to 119.999998 per
minute")
 field(INP,”2”)
 field(HIHI, "100.0")
..
}
..

Figure 8: Epics configuration using .db file

Tango
 Configuration information for tango devices are stored
in a Mysql database and configured using the tango tool

Proceedings of ICALEPCS2011, Grenoble, France WEPKS030

Software technology evolution 865 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

jive. In the example in Figure 9 Max alarm for
“test/simulator/rampx2” is set to 100 for the Amplitude
attribute.

Figure 9: Tango configuration using jive.

Tine
 Configuration information for tango devices are stored
in a csv files and configured using spreadsheet tools or a
text editor. Tine also provides the alternative options of
storing configuration information in xml files or in the
code.
 In the example in Figure 10 High alarm for
“test/simulator/rampx2” devices is set to 100.

Figure 10: Tine configuration using an excel tool.

 In the above configuration cases setting the alarm to
100 successfully caused the SCADA’s Alarm handlers (or
state handler for tango) to trigger a warning alarm when
the property Amplitude exceeded 100 which happened for
device rampx2 every 50 seconds.

SCADA TOOLS
 After device information had been packaged and
configured correctly they are put on the respective
“software bus” and made available for the epics, tango or
tine tools.
 Some tools to view data online in epics, tango and tine
are shown in figures 2, 3 and 4. These data display tools
are called striptool, atkmoni and JClient respectively.
 There are many other monitoring and control tools for
epics, tango and tine which perform functions such as
Data Display, Alarm Handling, Data Archiving and gui
Building (Figure 1). The tools have many similarities and
in fact the gui builder tool jddd [7] can be used to build
guis for epics, tango and tine. In all cases a unique device
name is used to identify the device. Additional tool
comparisons can be found in reference [8].

CONCLUSION
 Epics, tango and tine are all able to fulfil the
requirements for the vacuum control at EGO and more.
The learning curve for writing and configuring device
servers is high but once mastered devices can be
integrated quite quickly. There are many pre-written
device servers available especially for the more popular
SCADA. These pre-written device servers can be freely
downloaded although they must still be configured and
tested.
 The Simulator is a simple aid to generate repeatable
signals independently of the SCADA or hardware. It was
useful for learning to write simple device servers for
epics, tango and tine and for comparing SCADA tools
using known signals.
 All the SCADA provide useful tools for monitoring and
controlling devices Figure 1. The tools are similar and
some tools such as jddd [7] can even be used with all
epics, tango and tine.

REFERENCES
[1] F.Furukawa,“Very Simple Example of EPICS Device

Suport”, http://www-linac.kek.jp/epics/second
[2] http://www.ego-gw.it/public/about/whatIs.aspx
[3] http://www.isbu-

info.org/all_about_shipping_containers.html
[4] Raymond, Eric S.,”The Cathedral and the Bazaar”,

October1999,
 http://www.catb.org/~esr/writings/cathedral-bazaar/
[5] http://en.wikipedia.org/wiki/Intermodal_container
[6] A. Uchiyama… Proceedings of PCaPAC08,

Ljubljana, Slovenia, Development of embedded epics
on F3RP61-2L.

[7] http://jddd.desy.de/
[8] M.Mohan, VIR-0371A-11.pptx, “Advanced Virgo

Vacuum control Epics, Tango and Tine SCADA
comparison”, https://tds.ego-gw.it/ql/?c=8426

WEPKS030 Proceedings of ICALEPCS2011, Grenoble, France

866C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

