
JAVA EXPERT GUI FRAMEWORK FOR CERN BEAM
INSTRUMENTATION SYSTEMS

S. Bart Pedersen, S. Bozyigit, S. Jackson, CERN, Geneva, Switzerland

Abstract
The CERN Beam Instrumentation Group’s software

section has recently performed a study of the tools used to
produce Java expert GUI applications. This paper will
present the analysis that was made to understand the
requirements for generic components and the resulting
tools including a collection of Java components that have
been made available for a wider audience. The paper will
also discuss the prospect of using Maven as the
deployment tool with its implications for developers and
users.

INTRODUCTION
The CERN Beam Instrumentation Group (BI) belongs

to the Beams Department (BE). Inside this group, the
work of the BI Software Section is to implement real-time
servers in C++ that control instruments developed for
beam diagnostics located on all CERN accelerators and
their transfer lines (LHC, LHC injectors, ISOLDE, LEIR,
AD…). The team is composed of around ten physicists,
engineers and students with good software skills. The
main GUI clients are the hardware specialists in charge of
the instruments, along with a few operators and
accelerator physicists who use them during special
manipulations for additional status and control. Before
doing any low level C++ implementation, a design of the
instrument is made using a dedicated CERN software
architecture called FESA (Front-End Software
Architecture) [1] (Figure 1).

Providing graphical interfaces (GUI) implemented in

Java is also part of the section’s mandate. Hardware
experts need to access their equipments in many different
ways for parameter setting, signal visualization, error
diagnostics, calibration, data post processing and so on.

Java (JDK1.6) is currently the BE department’s
development language for all GUIs and the software
section’s Java developments follow this standard. The

low level software architecture, middleware and Java
component libraries are provided by the BE Control
Group.

PROBLEMATIC
Requests and specifications for new expert GUIs are

often very different and depend on the type of instrument,
the acquisition electronics and the type of diagnostics to
be performed. Therefore, a standardization of a
framework’s functionalities and a static list of options is
insufficient. The software engineer should instead be able
to create ad-hoc Java classes and components (graphical
or not) to fulfil specific requests.

Nevertheless, since the software requirements, although
different, often have a similar overall structure, it made
sense to have a common Java framework on top of which
everyone could build specific applications. A
functionality review of current expert GUIs revealed that
a common customizable graphical framework is an
efficient way to standardise and facilitate the development
of a Java project implementation.

All of CERN’s beam instrumentation systems belong to
a particular accelerator domain (LHC, SPS, PS…) and are
triggered by their own timing events. Each instrument is
identified based on a database of devices that links it to a
certain device name. The application window should
therefore, for example, be able to display the incoming
machine cycles and allow easy retrieval of device-names.
Another important point is that the number of data types
in an acquisition is limited. So, having the same graphical
component to input or display a scalar or plot an array
using common plot components would be a very efficient
solution as it avoids code redundancy and strengthens
software quality.

FROM THE OLD TO THE NEW
FRAMEWORK

Why Did We Have To Change?
The main purpose of a common expert GUI framework

is to provide a skeleton that can easily be built upon, so
reducing the need to re-develop large sections of code for
new applications and in so doing decreasing the total time
spent to create such an expert application.

The old expert GUI framework, in place since 2004,
was designed having the same goals in mind, but several
issues have appeared over the years. People were
therefore using this framework less and less and instead
started developing their own applications from scratch. As
already mentioned, an internal questionnaire revealed this
was mostly due to the rigidity of the framework and the
lack of desired functionality. Rigid, because this skeleton
was providing a structure in the form of tabs and panels,

CMW

Expert
GUI

COMM
Process

RT
Process

Memory

Hardware
modules

FESA: FEC – C++ Hardware Expert - Java

Figure 1: BE Front-End Software Architecture (FESA).

WEPKS027 Proceedings of ICALEPCS2011, Grenoble, France

852C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

which was sufficient at the time when it was designed, but
became a constraint as the panels to be shown always
needed to be heavily customized. Several missing basic
functionalities that were mandatory in terms of beam
diagnostic tools also forced programmers to abandon the
framework and instead implement their own code.

Besides these concerns, the section was frequently
experiencing issues related the dependencies of their
applications. All third party libraries coming from other
CERN groups were directly obtained at runtime from
external repositories and whenever a library lost its
backwards compatibility, all the applications depending
on it would break.

With the new expert GUI (v2), we tried to address these
issues by providing a framework that still has all of the
useful functionalities of the old framework, such as the
communication and plotting packages, but is also
programmatically more flexible (Figure 2). At the same
time, we tried to manage the dependency issue by using a
specific tool developed to handle this problem.
Additionally, other useful components written by
members of the section already existed and it was our
intention to make these available to all users through the
new environment.

What Did We Change?
The expert GUI framework needed a facelift both

visually and programmatically. The main transformation
was to convert the frame class that always had the same
look with fixed tabs and panels to two different classes
that inherit an abstract ExpertGUIFrame. First there is the
EmptyFrame that basically provides an empty window
where any of the desired components can be included.
Second there is the BasicFrame which already contains
commonly used components such as the RBAC (CERN
Role Based Access Control) toolbar and a built-in console
at the bottom of the frame.

In order to cover the need for some applications to look
like the old expert GUI, a couple of panel classes were
included in the new framework (VintagePanel,
VintageStylePanel) that could be easily incorporated into
the BasicFrame. If other predefined frame classes are
desired in the future, they can be easily created with a
framework extension.

In the old expert GUI, the very first step to create a
program was to create a new main class that inherited
properties from the framework main class. While this is
still possible in expert GUI v2, by inheriting from the
EmptyFrame or BasicFrame classes, the recommended
way to obtain the framework functionality is to fetch a
frame instance from a factory class and to use it as a
delegate in your main class. This makes sure that the
client who is using the provided frames only sees and
uses the methods which were meant to be used by the
class.

The communication library has basically stayed the
same except that there is a new type of communication
that deals with database (DB) connections. A new
CommunicationManager class has been introduced so
that the developer need not care about the details of
instantiating different kinds of communications (FESA
device or DB).

Applications often deal with more than one device,
sometimes even with more than one instrument type. To
facilitate the initialization of the communication and the
handling of those devices, the factory class needs to
provide a list of devices and databases. This information
is used to create a menu item in the menu bar where all
the relevant devices and databases are registered.
Additionally, it feeds two manager classes that deal with
the actions (button clicks) and the information that
accompanies these devices.

Instead of managing the dependencies manually, as is
done for applications based on the old expert GUI, we
have tried to incorporate a third party tool called Maven,
which automatically resolves all dependencies of a project
and takes only the specified libraries from a local section
repository.

This repository can also be used to share components
between the members of the section simply by publishing
their libraries into it.

What Are The Benefits?
The expert GUI v2 has become more flexible and it can

more easily suit individual needs than its predecessor. For
example, if someone wishes to completely write their own
application from scratch, they can do so by instantiating
the EmptyFrame but they wouldn’t have to forego the
communication library. Or, if someone wants to have an
application that looks the same as the old expert GUI, it
would also be possible to create it within the same
framework. Finally, the new framework offers access to
libraries (components) written by others, so everyone can
profit from each other’s work.

Panel

Status Panel

Middleware

Timing RBAC

Parameter
Panel

Console

Panel

Panel

DB

Device list FEC list

Expert GUI v2

Old Expert GUI

2D

3D

Figure 2: Old and new expert GUI.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS027

Software technology evolution 853 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

The usage of Maven should simplify the maintenance
of the dependencies and generally facilitate the software
build lifecycle.

JAVA SOFTWARE PROJECT
MANAGEMENT WITH MAVEN

What is Maven?
In short, Maven is a software tool for project

management and automation of builds [2], i.e. a build
component testing and dependency management tool.
Only a subset of the capabilities of Maven has so far been
tested within the BE-BI Group.

Maven is not a graphical tool in its own right but a
framework that is installed on the system (in an IDE i.e.
Eclipse) which assists the development of a project. It is
built around the concept of a “build lifecycle”. This
means that every complete project has to go through all
the stages of the cycle which, for example, can contain
compilation, testing, packaging (producing a jar),
deploying in a local repository, deploying in a remote
repository, etc.

The project has to successfully pass all of these stages.
In a “traditional” project, these stages would need to be
done separately. This manual mode forces the
programmer to repeat the same procedure for each stage.
Maven attempts to automate these procedures by
extracting the pieces of configuration which are needed
for every stage (for example: jar name, files to include in
the jar, content of the manifest file, deployment location,
etc..) and bundles them into a configuration file (Project
Object Model) that is specific per project. The most
important part of that file in our case is the list of direct
dependencies.

Why Do We Need It?
We are not obliged to use Maven, and for us it started

more as an experiment to see whether it could fit our
needs. We were hoping to profit from the standardisation
that comes with Maven as its capability for solving the
dependency problem. Its concept of build lifecycle gives
many structures almost for free, such as JUnit testing,
packaging, JAR signing and generally structured project
development. One additional strong argument to study
Maven came from the fact that CERN Controls Group
was also looking towards using Maven in the future.

Can We Use It?
Our deployment strategy does not implement any

versioning of a given application with only a development
and operational version at any given time. These two
versions used to be deployed by an ANT script into two
distinct folders. Each of these folders contains all the Java
libraries (JAR) of all the applications, both development
and operational versions. Either of these versions can be
launched through a program called the
ApplicationLauncher [3] (Figure 3).

A Maven project can be identified in a repository
through three parameters: GroupId, ArtifactId and

Version. These three qualifiers determine the folder
structure in the local repository where the project is
stored. However, if one decides to deploy using Maven,
by default it forces you to use the same folder structure. It
turns out that our current deployment strategy therefore
does not fit well with this Maven approach, requiring
some tricks to get rid of the Maven folder structure or
significant modification to the ApplicationLauncher. In
order to stay compatible with the current
ApplicationLauncher it was therefore decided to opt for
an Apache ANT script that copies the deployable JAR
files to the desired location.

How Are We Using It?
Maven’s dependency management system is

declarative, transitive and simple to use. The libraries that
a project needs to work properly are declared in its POM
(Project XXX YYY) file. The three pre-cited qualifiers
are enough for Maven to locate the right library in its
repository system. Maven can provide an arbitrary
number of repositories where it can obtain the requested
libraries. It offers the possibility to specify a local
repository which can be used internally in the section and
not made public to other developers, allowing the
possibility to control and manage changes i.e. updates of
external JAR files.

The dependency system’s transitivity (inheritance of
properties and dependencies) facilitates the development
of a project. Only direct dependencies need to be
provided to Maven. If the libraries that a project relies on
depend on another project, Maven will take care of this. It
knows where to fetch the indirect dependencies, since all
projects and libraries in the repository come along with a
POM file that declares their dependencies.

The inheritance concept, coming from object-oriented

programming, is applied to the POM file. Through

Maven
Project

Section
Repository

Expert
GUI

Backup

ApplicationLauncher

Python

Python

Maven

Process / Script

JAR libraries flow

CO
Repository

Figure 3: JAR libraries flow.

WEPKS027 Proceedings of ICALEPCS2011, Grenoble, France

854C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

inheritance, common settings and properties can be
propagated from a “parent” project to projects inheriting
from it. This mechanism gives the possibility to define a
parent project that contains most of the dependencies and
settings that are usually needed in any project. A creator
of a new project therefore only needs a POM file to
inherit from the parent POM file in order to have all
necessary dependencies, to know the location of the
keystore for signing JAR files and to have the settings in a
manifest file, etc…

In the old expert GUI framework, one needed to check
out a template project from the Apache Subversion SVN
repository in order to start a new project. Maven also
helps in this perspective because it provides a template
through a mechanism known as “archetypes”. An
archetype gives the possibility to steer several properties
of a project. It can impose a predefined folder structure on
a new project providing opportunity to standardize
structure across Java projects. It can also provide
additional files such as ANT files or log files and can give
a source code template for the entry point of a project.

What Are The Benefits?
It took a rather long time to set-up a generic

environment to work with Maven and then to effectively
use the tool for development. As it was not possible to
deploy our JAR files the way we wanted, we were forced
to opt for a hybrid solution using both Maven and ANT.
The most comfortable way for us to develop an expert
application is to have a simple ANT file that does the
cleaning, the compilation, the packing and the final
deployment with a simple mouse click as was the case for
the old expert GUI. In order to achieve this and spare
individual users from unnecessary Maven details, the
Maven commands are encapsulated in such an ANT file,
with all commands forwarded to the Maven system
except for the deployment task which is done directly
using ANT commands. To backup files and to retrieve
specific JAR files, a Python script is used.

The main advantage of using Maven is the control of
the dependency files. In addition the standardization of
projects and the use of archetype templates greatly lower
the effort required to start a new expert application
project.

The incorporation and usage of Maven in our projects
is an on-going process and there are still details to be
tested. Most of the benefits could probably have been
achieved in a different way using different tools. Many of
these options, however, would have probably required an
unacceptable amount of manual work and would have
ended up in a patch work of different components needing
to be unified to provide a similar functionality as Maven.

CONCLUSION
The analysis and improvement of our Java software

development tools are still on-going. This process is
taking time because of several constraints. Keeping
backward compatibility with our old applications, sticking

to CERN software standards, and covering the needs of
all our programmers are just some examples of things to
be considered.

The new expert GUI has already given very good
results. Users can easily and quickly create a Java project
with a pre-defined structure that will allow them to run an
application in two mouse clicks. At the same time, they
are able to add whatever components they need to
libraries that are now common to all. These components
have been specified inside our section and therefore
already provide most of the functionalities that might be
needed in such applications.

The use of Maven is not completed and has led to some
integration problems for our Java software architecture.
Nevertheless, the handling of the library dependencies
and the archetypes are very useful. The CERN Controls
group has not yet confirmed that Maven will be one of its
standards, but from our experience so far, we will give
positive feedback regarding these two interesting features.

REFERENCES
[1] Michel Arruat et al, “Front End Software

Architecture [FESA]”,
http://accelconf.web.cern.ch/accelconf/ica07/PAPER
S/WOPA04.PDF, ICALEPCS 2007.

[2] Maven: http://maven.apache.org/pom.html
[3] P. Karlsson, S. Jackson, “The introduction of

hierarchical structure and application security to Java
web start deployment”,
http://accelconf.web.cern.ch/AccelConf/ica05/procee
dings/pdf/O4_008.pdf, ICALEPCS 2005.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS027

Software technology evolution 855 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

