
A C/C++

Abstract
The CERN

in Java and C
150 active d
unify the dev
layout) using
is the de-fact
and depend
repository m
keep their d
versioning w
and available
finally there
This results
difficult to m
for Java, a p
for native pr
systems and
not keen to
approach wa
NAR/Nexus
dependencies
linker and co
The Makefil
binaries. Fin
files, metada
Nexus repos
the scope of
projects have
and some sta

Motivation
The BE/C

tool to Mav
Java projects
community
100’000 ope
Central repo
year. In add
many tools
tracking, con
the BE/CO J
into softwa
cooperation w

As the C/C
testing amon
the build too
the same in
Java develop

+ BUILD

N accelerator
C/C++, consis
evelopers. Th
velopment pro
g Apache Mav
to build tool f

dency manag
manager. C/C+

ependencies o
was applied, th
e for several p
was no depen

in very co
maintain. Even

lugin (Maven
rogramming la

platforms. Ho
abandon thei

as to combin
and Makefil

s, the version
ompiler optio
les carry the
nally the resu
ata) are vers
sitory. Early e
f the controls
e been succes
arting projects

M

n for Maven
O group is m
en [1], the in
s. This tool i
by about 60

en source pro
ository, millio
dition, Maven

for testing
ntinuous integ
Java team hav
are quality
with other dep
C++ develope
ng their projec
ols has been t
frastructure,

pment teams.

 SYSTEM

J. Nguyen
M. Dönsze

controls syste
sts nowadays

he controls gro
ocess and stan
ven and Sonat
for Java, it dea
gement, wher
++ developers
on other CER
he libraries ha
platforms and

ndency manag
omplex Make
n if Maven is p
n NAR) adapts
anguages for
owever C/C+
r current Mak

ne the best o
les. Maven N
ning and crea
ns to include
build proces

ulting artifacts
sioned and st
experiments w
group's Testb
sfully convert
 use this impl

MAVEN

n
migrating from
ndustry standa
is widely use
0% of devel
ojects are av
ons of conne
n can be used
g, source m
gration, and s
ve been putti
and reuse

partments [2].
ers want to im
cts, the oppor
taken so they
tools and exp

M BASED

Xuan, B. C
elmann, Bog

em, mainly w
of 50 project

oup has decid
ndards (e.g. pr
type Nexus. M
als with versio
reas Nexus
were struggli

RN projects, a
ave to be com
d architectures
gement mechan
efiles which
primarily desi
s the build pr
different oper

++ developers
kefiles. Henc
f the two wo

NAR manage
ates a file wit

the dependen
ss to generat
s (binaries, h
tored in a ce
were conduct
bed. Some exi
ted to this sol
ementation.

m an in-house
ards for mana
d among the
opers. More

vailable on M
ctions happen
d seamlessly

management,
so on. Since 2
ing a lot of e

of resource

mprove quality
rtunity of uni

y could profit
perience from

D ON MA
SYSTEM

Copy, CERN
gazici Unive

written
ts and
ded to
roject

Maven
oning
is a

ing to
as no

mpiled
s, and
nism.
were

igned
rocess
rating
were
e our
orlds:

es the
th the
ncies.
e the

header
entral
ted in
isting
lution

build
aging
Java
than

Maven
n per
with
issue
2003,
fforts

es in

y and
ifying
from

m the

Mav
M

versi
unifo
short
down
publ
an ar

M
exten
Mav
own
func
gene

As
file c
parts
depe

Mot
M

well
prog
comp
mod
Mav

AVEN FO
M

N, Geneva, S
ersity, Istan

ven Basics
Maven’s key fe

ioning. It ten
orm build cyc
t, Maven ta
nloads the ne
ishes the outp
rtifact; it can b

Maven is plug
nded with plu

ven core devel
one. Plug

tionalities an
erating docs, d
s shown in Fi
called pom.xm
s are project
endencies info

Figure

T

tivation, JN
Maven handles

. Since Java
grams it see
pilation and li

dules as part
ven to handle

R THE L

Switzerland
nbul, Turkey

eatures are dep
ds to enforce
cle with well
akes the sou
eeded depende
put to a repos
be a jar, zip, w
gin based and
ugins. The latt
lopers, contrib
ins cover a
nd have var
downloading s
ig. 1, a projec
ml (Project Ob
information f

ormation.

1: Simple pom

THE NAR P

NI and C Lib
the build ste

a allows the
ems logical
inking of JNI
of the Mave

e native (C,

LHC CON

d
y

pendency man
e standards by

defined succ
urces code,
encies, builds
sitory. The ou
war, etc...
d therefore c
ter can be pro
butors, or one
a very wid
rious purpos
specific artifac
ct is represente
bject Model).
for the curren

m.xml examp

PLUGIN

braries
eps for Java p

coupling to
to include
(Java Native

en build step
C++, object

NTROLS

nagement and
y providing a
cinct steps. In
resolves and
 the files and

utput is called

can be easily
ovided by the
e can write its
de range of
ses, such as
cts, etc...
ed by a XML
 Its main two

nt project and

le.

programs very
C and C++
the step of
Interface) [3]
s. To extend
tive-C, etc...)

d
a
n
d
d
d

y
e
s
f
s

L
o
d

y
+
f
]
d
)

WEPKS026 Proceedings of ICALEPCS2011, Grenoble, France

848C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

languages the NAR (Native ARchive) plugin [4] was
written. How this plugin handles the compilation of JNI
and other native modules for different platforms as well
as their distribution and their usage of Maven’s
dependency mechanism is explained below. The NAR
plugin consists of multiple sub plugins each of which
takes part in the NAR lifecycle.

NAR Lifecycle
As mentioned earlier, to build any product Maven runs

through a sequence of build steps. These steps are defined
as a build lifecycle and directly associated to a packaging
definition. By default Maven comes with
packagings/lifecycles for jar, war, ear and some more. To
enhance the standard build steps in the jar lifecycle with
native compilation and linking, extra steps (in bold)
where defined in the NAR lifecycle. The packaging for
this lifecycle is NAR and a simplified version is given
below:
 nar-download
 nar-unpack
 compile, nar-javah, nar-compile
 nar-testCompile
 test, nar-test
 nar-package, jar
 nar-integration-test
 install
 deploy

Native Sources and Headers
Maven assumes standardization for its plugins. The

sources and header files for native parts of the code need
to be stored in predefined places, which can be redefined
if necessary. Header files and c files are not stored in the
same location to make it easier to distribute the headers
without the sources. These locations are used by the nar-
compile plugin but also by the nar-javah plugin which
runs the javah compiler. All generated output is stored, as
usual in Maven, in subdirectories of the target directory.

AOL and Properties
To distinguish different platforms, operating systems

and compiler/linkers the NAR plugin uses an AOL
(Architecture Operating system Linker) qualifier. This
qualifier looks like "i386-Linux-gcc" on a Linux i386
platform with gcc, but could be further extended in the
form i386-Linux63-gcc4.1. The qualifier is used to handle
different distributions as well as for selection of options
for different compilers. Options and other flags are
specified in an aol.properties file which sits next to the
pom.xml file. A property file makes more sense than
trying to put everything into profiles in the pom.xml as
the number of platform/compiler combinations can be
fairly large. Properties are stored in the aol.properties file
for specific AOLs in dotted notation, for instance:
x86.Windows.msvc.cpp.compiler=msvc
i386.Linux.g++.c.options=-Wall -Wno-long-long

Compilation and Testing
For Java the maven-compiler-plugin handles the flags

such as debug, optimization and others. We chose to use
the cpptasks library [5] as this library unifies flags,
options and linker strategies across different platforms
and compilers/linkers. Based on the AOL a compiler,
linker and their default flags are retrieved from the
aol.properties file. These can be overridden by a project
specific aol.properties file. The nar-compile plugin
handles the native compilation/linking phase for which
the cpptasks library was extended to use multiple cores in
parallel to speed up compilation.

The nar-test plugin runs unit tests against the created
JNI or standalone library. The test plugin makes sure that
all libraries can be found.

The NAR Format and its Attached Artifacts
To package created libraries, executable and object files

for re-use by others the NAR plugin uses its own format,
the NAR file. A NAR file is no more than a standard jar
file containing object files, executables, libraries and or
header files. Files are stored in a directory structure that
includes the AOL specifier but also reflects if libraries are
static or dynamic. In its unpacked form the NAR compiler
plugin is able to pick up header files and refer to libraries.
This is important if some other package depends on a
NAR library.

Three artifacts are produced under normal conditions: a
standard NAR containing all Java class files if there are
any as part of the project, a -noarch NAR file containing
all non-architecture (non-AOL) specific files, such as
header files and a -<aol> NAR file containing AOL
specific files such as libraries. The first NAR file contains
a property file that refers to the other two, which is used
by the nar-download plugin, see below. The two latter
NAR files are attached artifacts to the first. As can be
seen this set of NAR files is a native equivalent for Java's
single jar file.

The NAR files are split up in -noarch and multiple -
<aol> files to make generating them easier and to
download only the ones one need for a developer on a
particular platform.

Distribution, Install and Deploy
The NAR plugin relies on the standard maven-install

and maven-deploy plugins to install and deploy the
primary NAR artifact and its attached artifacts. Any
mechanism of caching such as the use of Sonatype Nexus
[6] works transparently. Any Maven repository server
will just store NAR files and their attached artifacts as
another type of packaging.

Dependencies on other NAR Libraries
The reason for creating NAR files is so one can make

other projects depend on them. These projects need to be
also of the NAR packaging type and can then declare
NAR dependencies. Any dependency declaration will
initiate a download of the primary NAR artifact by Maven

Proceedings of ICALEPCS2011, Grenoble, France WEPKS026

Software technology evolution 849 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

itself. This primary NAR artifact is stored in the local
repository.

Downloading and Unpacking Locally
Once a primary artifact of a dependency is downloaded,

it is inspected for the above mentioned property file to see
what attached artifacts need to be downloaded. In the
normal case a -noarch and a -<aol> artifact will be
downloaded by the nar-download plugin and stored in the
local repository. As these NAR files as such are no use to
any compiler, they will be unpacked by the nar-unpack
plugin in a subdirectory of the current projects target
directory (the latest version of Maven supports concurrent
access to the local repository directory, so unpacking can
also be done there in the future, thereby sharing artifacts
and gaining space). The unpacked NAR files reveal the
header files and libraries of the dependency and can thus
be used the nar-compile plugin. Include paths and library
paths will be set up automatically.

Cross Talk with other Systems
Other systems exists to build native (and even Java)

code. The NAR plugin tries to be open and to integrate
with those systems. One can for instance fairly easily call
"configure", "autoconf" and "automake" of the GNU
build system [7], or just call "make" to build libraries the
usual way and use the NAR files purely for distribution
and dependencies, as is explained below.

EXTENDING THE NAR PLUGIN

At CERN
At CERN, some projects were successfully converted

to Maven NAR, but it resulted in big XML
configurations. Indeed to simply add a compilation flag,
about fifteen XML lines are needed whereas only one line
is required with Makefiles, thus C/C++ developers were
not keen to abandon the flexibility of their current
Makefiles. In addition to that, CERN projects rely on
cross-compilation, which is not covered by Maven NAR
out of the box.

Design
Therefore it was essential to modify the NAR plugin

according to our needs. A hybrid solution has been
favoured: separate the build tasks between Maven NAR
and Makefiles. Maven NAR takes care of the dependency
management and versioning and Makefiles are in charge
of the compilation process. NAR lifecycle has been
modified so the goal nar-compile calls a Makefile instead
of calling a compiler. Then binaries are expected to be
generated and to be published to a binary repository. In
our organization we use Sonatype Nexus for Java and
decided to reuse it for C/C++ projects.

Finally, in order to support our cross-compilation
infrastructure used by our Makefiles, it was necessary to
modify cpp-tasks to add our compilers.

Implementation
As shown in Fig. 2, several steps are needed to build a

C/C++ project with the customized Maven NAR. The
following paragraphs describe each step along with its
detailed implementation.

Makefile Generation Phase
The usual nar-download and nar-unpack phases are run,

but in addition after those NAR will generate a Makefile
with compiler and linker options. This Makefile contains
only the dependency information for a specific platform,
therefore the chosen naming convention is
Makefile.dep.<aol>.

Compilation Phase
Maven NAR simply execute the command “make

MAVEN_BUILD=true”. By convention, a Makefile
needs to be present next to the pom.xml and its default
target has to compile the source code. It also needs to
include the Makefile.dep previously generated and use the
defined macros from it.

The output binaries have to be placed in specific
folders. The agreed standard is to put the library in
build/lib/<aol> and includes in build/include. In BE/CO,
we tend to enforce platforms independent headers, but
some teams required platform specific headers. In this
case, these headers go in build/include/<aol> and the
Makefile generator will add an extra –I flag accordingly.

Packaging Phase
Files will place in the right folders so nar-package can

do its job. Thanks to the directory conventions, NAR
knows where to pick up what.

Deployment Phase
In Maven terminology, deployment means publishing

on a server to make it available to other developers. This
phase has not been altered from the official NAR plugin.

Usage Example
At CERN, C/C++ developers are used to define a

macro called CPU to define the target platform. Instead of
typing the whole target platform, shortcuts such as L865
or ppc4 are used. The same shortcuts were kept when
invoking Maven commands, but these shortcuts are
expanded to the AOL standards as i386-SLC5-gpp.

BENEFITS AND APPLICATION

Benefits
Since the dependencies information is separated and

automatically generated, the Makefiles are simplified, the
developers do not need to be concerned about dependency
management and versioning anymore, and ultimately they
can keep their habits with their Makefiles.

The previous implementation using pure Makefiles
remains compatible with Maven NAR. Makefiles are
called with the flag MAVEN_BUILD=true from Maven

WEPKS026 Proceedings of ICALEPCS2011, Grenoble, France

850C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Figure 2: Extension phases.

NAR, thus it is known when a build is processed by
Maven or pure Makefiles, some conditions can thus be
added in order to include files accordingly.

Standards are also enforced, as explained earlier;
Maven NAR needs to know where to pick up the different
binaries (executables, libraries, headers). Directories need
to have a well-defined structure with standardized names,
as well as the files.

In addition of the build tool, the software
development/release/deployment process and binary
repository are also unified between programming
languages. Java developers can easily switch to C/C++
and invoke the same commands through Maven to
achieve the same goals. The build lifecycles are almost
identical, first the code is compiled, then the unit tests are
compiled and run, finally the product gets packaged.

Sharing C/C++ projects across and outside CERN
becomes easy with Sonatype Nexus, CERN developers
just needs to point to the binary repository and
collaborators can proxy it and use the artifacts.

A CI (Continuous Integration) server takes care of
building the projects with the bleeding edge source code
from our SVN trunk. If a commit breaks a project, it will
be immediately spotted.

Applications
The Maven NAR plugin is especially suitable to

simplify cross-platform Java C/C++ build processes.
As an example, the build process of the CERN Data

Interchange Protocol (DIP), a platform independent
middleware protocol, was updated early 2010 to move
from two entirely separate build systems relying on a
series of manual steps and environment variables
configuration into a unified Maven based build.

Because DIP is available both as a C++ and Java API,
for three different platforms (Windows 32 bits, Linux
SLC5 32 bits and SLC5 64 bits), a grand total of six
builds, executed manually, had to be coordinated to
assemble a complete distribution release.

Besides reducing the associated maintenance overhead,
relying on a Maven build also helped to:
 Integrate more seamlessly the Java and C++ APIs

(through JUnit testing)
 xDistribute its various components (Header files,

static and dynamic libraries, auto generated

documentation, associated development tools).
Since DIP is used by many projects at CERN,

distributing it in NAR format also greatly simplified reuse
for all CERN Maven based projects.

NEXT STEPS

Unit Tests
There are some improvements which can be done at the

test phase. Instead of calling binaries which returns a code
exit, we would like to integrate a testing framework to
ease the writing of tests. Google C++ Testing Framework
is a good candidate [8], to be used with Gcov [9] which
offers code coverage. The goal is to generate full reports
similar to the JUnit one, which will be displayed in our
continuous integration server.

Merge Back with the Official Maven NAR
The CERN Maven NAR version embed functionalities

specific to CERN, but most of the used methodology and
chosen convention are standards in the C/C++
community. These changes need to be generalized and
integrated back into the main version of Maven NAR in
order to be able to profit from a community.

REFERENCES
[1] Apache Maven, http://maven.apache.org/
[2] B. Copy, M. Mettaelae, Agile Development and

Dependency Management for Industrial Control
Systems, WEPKS001, Proceedings of
ICALEPCS’11, Grenoble, France.

[3] JNI,
http://en.wikipedia.org/wiki/Java_Native_Interface

[4] Maven Nar plugin,
http://duns.github.com/maven-nar-plugin/

[5] Cpptasks,
http://ant-contrib.sourceforge.net/cpptasks/index.html

[6] Sonatype Nexus, http://nexus.sonatype.org/
[7] GNU Build System,

http://en.wikipedia.org/wiki/GNU_build_system
[8] Google C++ Testing Framework,

http://code.google.com/p/googletest
[9] Gcov, http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Proceedings of ICALEPCS2011, Grenoble, France WEPKS026

Software technology evolution 851 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

