
CAFE, A MODERN C++ INTERFACE
TO THE EPICS CHANNEL ACCESS LIBRARY

J. Chrin, M.C. Sloan, Paul Scherrer Institut, 5232 VilligenPSI, Switzerland

Abstract

CAFE (Channel Access interFacE) is a C++ library that
provides a modern, multifaceted interface to the EPICS-
based control system. CAFE makes extensive use of tem-
plates and containers with multiple STL-compatible ac-
cess methods to enhance efficiency, flexibility and perfor-
mance. Stability and robustness are accomplished by en-
suring that connectivity to EPICS channels remains in a
well defined state in every eventuality, and results of all
synchronous and asynchronous operations are captured and
reported with integrity. CAFE presents the user with a
number of options for writing and retrieving data to and
from the control system. In addition to basic read and
write operations, a further abstraction layer provides trans-
parency to more intricate functionalities involving logical
sets of data; such ‘group’ objects are easily instantiated
through an XML-based configuration mechanism. CAFE’s
suitability for use in a broad spectrum of applications is
demonstrated. These range from high performance Qt GUI
(Graphical User Interface) control widgets, to event pro-
cessing agents that propagate data through the Object Man-
agements Group’s Data Distribution Service (OMG-DDS),
to script-like frameworks such as MATLAB. The method-
ology for the modular use of CAFE serves to improve
maintainability by enforcing a logical boundary between
the channel access components and the programming ex-
tensions of the application framework at hand.

CAFE À LA MAISON

The Experimental Physics and Industrial Controls Sys-
tem (EPICS) is an established framework for the devel-
opment of distributed control systems in the field of parti-
cle accelerators and other large-scale experimental endeav-
ours [1]. A dedicated communications protocol, Channel
Access (CA), allows for the high throughput of small data
packets between the low-level hardware and external pro-
grams. Its native client library [2], written in the C pro-
gramming language, provides remote access to controls
data encapsulated in Process Variables (PVs) residing in
EPICS Input Output Controllers (IOCs). It is thus the en-
try point for a number of CA interfaces to various C-based
high-level programming languages, including declarative
and 4

th generation languages such as Python and MAT-
LAB respectively. While each of the resulting CA classes
aims to achieve a similar interface and abstract layer, their
context is typically confined to the system in which they
execute. Another approach would be to enforce a logical

boundary between the channel access components and the
specifics of a given domain’s C/C++ extension framework
by providing a single C++ CA library for use across a num-
ber of C/C++ based programming languages.

There are several advantages to this library-based ap-
proach:

• The inherent simplicity and convenience of maintain-
ing the channel access interface code and the flexibil-
ity it offers for library designers.

• New CA functionalities from future EPICS re-
leases [3] need only be integrated in a single reposi-
tory.

• Bindings to scripting and domain-specific languages
are simplified.

• In-house (à la maison) CA expertise ensures a quick
response to user needs and problem solving.

CAFE (Channel Access interFacE) is a C++ library that
provides a modern, multifaceted interface to EPICS. It is
intended to be expressive enough to provide the necessary
abstractions in a convenient way and to be flexible enough
to act as a host CA interface for other C/C++ based lan-
guages.

CAFE provides functionality for synchronous and asyn-
chronous interactions for both individual and groups of
channels. Data propagation through channel access is per-
formed exclusively with native data types, although data
presented to/by the CAFE interface may be in any mean-
ingful format. This is also true of enumerated types. CAFE
makes extensive use of function templates that allow iden-
tical code segments to perform a given task for any type of
data. These have been used to implement client interfaces,
underlying channel access classes, and data type conver-
sions.

Callback functions have been implemented for all oper-
ation involving channel access connection handlers, event
handlers and access rights handlers. Their invocation trig-
gers their data to be written into a multi-index container
provided by the Boost libraries [4]. The container takes
ownership of the data object elements, which store all the
current details of the associated PV, and provides multiple,
distinct interfaces that allow for fast retrieval and modifica-
tion of the element’s data. This is exemplified by an inquiry
to the current connection state of a channel which is a fac-
tor of ∼ 10

2 faster compared to the native CA client call.
While every gain in efficiency is welcome, it is, however,

WEPKS024 Proceedings of ICALEPCS2011, Grenoble, France

840C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

the channel access data transfer time (∼ ms) that remains
the dominating factor. There is, therefore, some leeway for
code optimization within the CAFE Application Program-
ming Interface (API). The most critical issue is to avoid
dynamic memory allocation at each channel access trans-
action as this noticeably impacts performance. The opti-
mal approach is thus for the created PV handle (object ref-
erence) to take responsibility for allocating the necessary
memory for storing the handle’s data set within the element
of the container. Memory space is re-allocated whenever
the connection event handler is invoked or upon demand.

CAFE aims to hide the low-level technical details of
channel access as much as possible. It has thus been pre-
configured with a reasonable set of default parameters that
allow basic operations to be immediately undertaken with-
out details of CA or other third-party APIs leaking into the
application domain. Nevertheless, as users become accus-
tomed to the many CA possibilities, they will wish to op-
timize connectivity in a manner that best suits the needs
of the application, e.g. by influencing certain CA proper-
ties such as timeouts, and whether to instigate operations as
blocking or non-blocking. Each handle possesses its own
set of CA properties that can be easily configured ‘on the
fly’ through designated container access methods. Thus,
although the internal mechanics of certain channel access
operations may change, the interface gratifyingly remains
the same.

CAFE is also equipped with an abstract layer that ad-
dresses related data sets as single logical software units.
Such data may be retrieved/set with a single method invo-
cation. An XML configuration mechanism is used for the
initialization of such CAFE ‘group’ objects. CAFE thus
has its own XML schema for defining collections of related
nodes and for constructing groups from collections and in-
dividual channels. While such an XML file consisting of
collections may be manually instrumented, the practice is
to extract nodes of the same type from a master XML ac-
celerator file that defines the topology of the accelerator
in Universal Machine Format [5]. A dedicated parser tra-
verses the accelerator XML to identify collection members
and to transform their data into the CAFE XML schema.
The pre-defined collections are loaded from the generated
‘Collections XML file’ on initializing CAFE and may be
addressed by interfaces through their identifier.

In constructing the channel access interface, effort had
been made to follow sound practices presented in [6]. Any
remaining errors, however, remain the authors responsibil-
ity. The work presented here has been undertaken in a
Linux environment and in the context of the Swiss Light
Source (SLS) and the 250 MeV SwissFEL Injector Test Fa-
cility at the Paul Scherrer Institute (PSI).

SAVEURS DE CAFE

CAFE’s suitability for use as a channel access host
within different applications is demonstrated with exam-
ples ranging from high performance Qt control widgets [7],

to Event Processing Agents (EPAs) that propagate data
through Object Management Groups’s (OMG’s) Data Dis-
tribution Service (DDS) [8], to script-like frameworks such
as MATLAB [9]. Figure 1 illustrates how the CAFE
API conceptually extends the different application environ-
ments.

�� �����

����

�����

��	
����

���

�	�����

����

�����������
����

�����

�����

�����

	�
���

�����������

��������	��

��

����������

Figure 1: Application objects connecting to CAFE’s
adapter to channel access.

QCafe

The use of Qt for the development of CAFE-aware GUI
(Graphical User Interface) widgets is a natural choice given
the commonality in language. Qt offers components for a
broad range of customizable widgets that can be readily ap-
plied to control system applications, and its graphics canvas
and style engine allows modern, sophisticated user inter-
faces to be created. Qt’s low latency coupled with C++’s
runtime and memory efficiency further provides for a su-
perior solution for building high performance GUI applica-
tions. These aspects could be well exploited for the com-
putation and display of high-volume and high-rate data.

The QCafe package combines the speed, power and flex-
ibility of C++/Qt with CAFE’s extensive and robust chan-
nel access interface. The QCafe class diagram is shown in
Fig. 2. The QCafe widgets are completely decoupled from
CAFE as interaction with EPICS PVs is handled solely
by QCafe’s ‘CAFE Interface Class’. EPICS data are then
communicated between the interface class and the wid-
gets using Qt’s signals and slots mechanism. Some of
the control/monitor widgets developed are shown in Fig. 3.
The QCafeWheel widget is a customized widget built from
other Qt GUI components and exhibits the same behaviour
as its counterpart in MEDM (Motif Editor and Display
Manager), one of EPICS established GUI builders [10].
Some of the widgets, namely QCafeStripChart, QCafeS-
lider and QCafeMeter, were developed with Qwt [11], a
graphical extension to Qt.

Work is in progress to integrate QCafe widgets into Qt
Designer, a tool for designing and building GUIs from Qt
components. This will allow EPICS control GUIs to be
created in an entirely code-free framework.

EPICS-Qt interfaces have also been developed indepen-
dently at other facilities [12,13].

Proceedings of ICALEPCS2011, Grenoble, France WEPKS024

Software technology evolution 841 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 2: QCafe class diagram.

� �

���������	��
��������
	��	
��
�
�	�
�	����	������

���������	
�������
��
��������

���
�������	�����	
��
�
�	�
�������

���������	��
����
�	
��	��������	��������

���������	�������	
��
��������
	�
�	
���
�������	������	
��	����	������	

�������
�	���	�����	
�������������	����	
���	��� �	�������

!����	������	��	
�	������"	������	
��������	��	����

�
	���	���
�	��	�
	��	�
	
�	���	�������
#	���	���	
��	�
�����	�
�	���	������	
����	��	���	����
��	�����

$������	�
	$�%$	
�����	������

!����	���&���
�	�����	
���
	�����

���

		���$�� '�()*�+����,

���$�� '�()*�+����,

�������

�������

Figure 3: QCafe monitor and control widgets developed
with Qt (v. 4.6.3) and Qwt (v. 5.2.1).

CAFE-DDS

High performance messaging middleware is an impor-
tant component of distributed applications, and one that has
been, for many years, an integral part of the high-level ap-
plications software infrastructure at the SLS [14,15]. DDS
is a recent OMG standard that supports high performance
publish-subscribe messaging with configurable Quality-of-
Service (QoS) guarantees. It has been put into good ef-
fect at the SwissFEL Injector Test Facility to disseminate
summarized results of data acquired from the low-level
hardware system. The use of CAFE combined with DDS
(OpenSplice Community Edition, v. 5.1 [16]) is exempli-
fied in an EPA that gathers data from the Digital Beam Po-
sition Monitors (DBPMs) [17].

The task of the DBPM-EPA is to aggregate, verify and
analyze the DBPM data and to publish a summarized data
set through a specially designated DDS Topic. The part
of CAFE is to provide a simple, intuitive interface to initi-
ate the acquisition of an entire complement of DBPM PVs.
This is fulfilled by initiating monitors on the PVs through a
single method invocation that includes, as input arguments,
a group ‘identifier’ and a callback function that directs up-
dated values into a designated data container. The DBPM

PVs that comprise the group are defined in an XML config-
uration file by reference to a pre-loaded collection identi-
fier (as described earlier) and the specified device attributes
(Listing 1).

On parsing the DBPM-EPA XML configuration file, col-
lections are expanded into their constituent elements and
combined with the stated attributes to instantiate a CAFE
‘group’ object that holds the sequence of required DBPM
PVs. The CAFE ‘group’ object created from Listing 1 is
referenced in CAFE methods by its identifier, ‘gDBPM’.
Static DBPM data (names, positions, etc.) associated with
each of the ‘gDBPM’ group members are extracted from
the master SwissFEL XML file, and published to a sepa-
rate DDS Topic for propagation to GUI clients.

The EPA is thus entirely configurable through XML, and
the DDS Topics, which define and identify the data be-
ing propagated, provide sufficient information to allow for
the dynamic configuration of a GUI client. Changes to the
topology of the accelerator may thus be propagated to ap-
plications by simple modification to a configuration file,
without need to recompile, as demonstrated in [5].

Listing 1: XML Configuration for DBPM-EPA at Swiss-
FEL Injector Test Facility

<group i d = 'gDBPM '>
<c o l l e c t i o n> < i d> cDBPM < / i d>

<a t t r i b u t e> X < / a t t r i b u t e>
<a t t r i b u t e> Y < / a t t r i b u t e>
<a t t r i b u t e> Q < / a t t r i b u t e>
<a t t r i b u t e> POS−VALID < / a t t r i b u t e>
<a t t r i b u t e> Q−VALID < / a t t r i b u t e>

< / c o l l e c t i o n>
< / group>

CAFE Mocha

The use of MATLAB in the accelerator community has
surged in recent years and is the principal choice of physics
application developers at the SwissFEL Injector Test Fa-
cility [18]. (The Qt application presented in the previous
subsection is one of a few exceptions.) Its increased usage,
however, warrants a more extensive interface to the EPICS
control system to the presently used mca (MATLAB Chan-
nel Access) package [19,20].

CAFE mocha (MATLAB Objects for CHannel Access)
is a MATLAB Executable file (MEX-file) that interfaces
CAFE to MATLAB allowing CAFE routines to be called
from within MATLAB in the same manner as MATLAB
built-in functions. In many respects, the groundwork for
MATLAB channel access connectivity had already been
laid by mca. CAFE mocha, however, unlike mca, implic-
itly shelters underlying CA routines from the MEX API.
Since the former are designated to the CAFE library, the
resulting MEX-file is greatly simplified. Indeed, estab-
lishing communication between CAFE methods and the
MATLAB workspace, where variables are passed into a
function through input and output arguments, is largely re-

WEPKS024 Proceedings of ICALEPCS2011, Grenoble, France

842C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

duced to mapping MATLAB data types to their equivalent
CAFE/C++ data types.

The mocha interface improves on mca by providing sup-
port for all MATLAB data types, a richer set of access
methods and a further physics oriented abstraction layer. Its
use at the SwissFEL Injector Test Facility has been spurred
on by the fact that certain tangible benefits became imme-
diately available. Access to MATLAB primitive data types
significantly improved performance in the analysis of cam-
era data used in beam profile measurements. The advent of
MATLAB’s object-oriented programming capabilities has
also allowed us to produce mocha-aware classes for spe-
cific operations, such as the acquisition of machine snap-
shots and orbit data (though some computations have been
moved to within the MEX-file to enhance performance).
Typically these objects, on initialization, extract static data,
such as node positions, from CAFE’s interface to an XML-
based accelerator database (i.e. the master XML accelera-
tor file). Object methods are also invoked to retrieve con-
trols data with one synchronous group call, or to start mon-
itors which cache updated values and, following the con-
vention in mca, may optionally execute a MATLAB script
to update a widget value. Widget updates may alternatively
be handled through MATLAB’s Event and Listener model,
which allows a change in an object property to be moni-
tored and a corresponding action to be triggered.

CAFE mocha’s compilation on a 64-bit machine has also
enabled a first comparison of the injector data with a com-
putationally intensive three-dimensional space-charge sim-
ulation model.

A number of mocha mca-like MATLAB scripts [20],
which is the usual way in which mca users access the mca
MEX-file, have been provided to facilitate transition from
mca to mocha for application developers.

HARD ROCK CAFE

Acceptance tests from several external APIs have been
performed and give us confidence that CAFE is in a cred-
ible, ‘Hard as Rock’, state and can now be deployed. A
short-term objective is to begin the task of replacing CA
interfaces that are frozen to deprecated CA functions (as
in [21]) with the CAFE API. Developments with QCafe
continue with the aim to provide superior, high perfor-
mance GUI applications, while CAFE-DDS offers a state-
of-the-art publish-subscribe mechanism for applications
geared towards a reactive form of programming. CAFE’s
mocha API has demonstrated immediate tangible benefits
and work towards its consolidation draws near. The ap-
proach of having an extensive and flexible, C++ channel
access library to serve as a host API for C/C++ based lan-
guage extensions will lead to a thoroughly tested code base
for other declarative and domain-specific environments, ul-
timately simplifying maintenance of code. If proved ef-
fective, then “Hard Rock Cafe’s” mission, “to love all and
serve all”, is one that may be equally adopted by our very
own brand of “Hard Rock CAFE” [22]!

REFERENCES

[1] EPICS,http://www.aps.anl.gov/epics/.

[2] J.O. Hill, R. Lange, “EPICS R3.14 Channel Access Refer-
ence Manual”,
http://www.aps.anl.gov/epics/docs/ca.php.

[3] A. Johnson, R. Lange, “Evolutionary Plans for EPICS Ver-
sion 3”, ICALEPCS 2009, Kobe, Japan, pp. 364–366.

[4] Boost Multi-index Containers Library,
http://www.boost.org/libs/multi index.

[5] J. Chrin et al., “XML Constructs for Developing Dynamic
Applications or Towards a Universal Representation of Par-
ticle Accelerators in XML”, IPAC 2011, San Sebastián,
Spain, pp. 2295–2297.

[6] D. Zimoch, “Channel Access Client Programming”, EPICS
Collaboration Meeting, 27-29 July 2009, NFRI, Daejeon,
Korea,
http://www.aps.anl.gov/epics/meetings/2009-07/.

[7] Qt, http://qt.nokia.com.

[8] OMG-DDS, http://portals.omg.org/dds/.

[9] MATLAB ®, http://www.mathworks.com.

[10] MEDM,
http://www.aps.anl.gov/epics/extensions/medm/.

[11] Qwt, http://qwt.sourceforge.net.

[12] S. Baek et al., “KSTAR Widget Toolkit using Qt Library
for the EPICS Based Control System”, ICALEPCS 2009,
Kobe, Japan, pp. 146–148.

[13] A. Rhyder, A. Owen, G. Jackson, “Qt EPICS Development
Framework”, PCaPAC 2010, Saskatoon, Saskatchewan,
Canada, pp. 30–32.

[14] M. Böge, J. Chrin, “Developments to the SLS CORBA
Framework for High Level Software Application”,
ICALEPCS 2005, Geneva, Switzerland, paper ID:
WE4A.1-5O.

[15] M. Böge, J. Chrin, “An Event Service for the Propagation
of Data”, SLS Note: SLS-TME-TA-2004-0255, Dec. 2004,
http://ados.web.psi.ch/slsnotes/tmeta040255.pdf.

[16] OpenSplice,http://www.opensplice.com.

[17] J. Chrin, G. Prekas, “A Taste of CAFE”, ICALEPCS 2009,
Kobe, Japan, pp. 821–823.

[18] M. Dach et al., “Control System in SwissFEL Test Injec-
tor Facility”, ICALEPCS 2011, Grenoble, France,These
Proceedings.

[19] T. Terebilo, “Channel Access Client Toolbox for MAT-
LAB”, ICALEPCS 2001, San Jose, California, USA,
pp. 543–544.

[20] MATLAB Channel Access (mca), http://sourceforge.
net/apps/trac/epics/wiki/MatlabChannelAccess.

[21] J. Chen et al., “CDEV: An Object-Oriented Class Library
for Developing Device Control Applications”, ICALEPCS
1995, Chicago, Illinois, USA, Paper ID: M4B-a.

[22] J. Chrin, “Hard Rock CAFE”, EPICS Collaboration Meet-
ing, 3-7 October 2011, PSI, Villigen, Switzerland,
http://indico.psi.ch/event/EPICS.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS024

Software technology evolution 843 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

