
ADDING FLEXIBLE SUBSCRIPTION OPTIONS TO EPICS*

Ralph Lange, Helmholtz-Zentrum Berlin / BESSY II, 12489 Berlin, Germany
Andrew Johnson, Argonne National Laboratory, Argonne, IL 60439, USA
Leo Dalesio, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract
The need for a mechanism to control and filter

subscriptions to control system variables by the client was
described in a paper at the ICALEPCS2009
conference [1]. The implementation follows a plug-in
design that allows the insertion of plug-in instances into
the event stream on the server side. The client can
instantiate and configure these plug-ins when opening a
subscription, by adding modifiers to the channel name
using JSON notation [2]. This paper describes the design
and implementation of a modular server-side plug-in
framework for Channel Access, and shows examples for
plug-ins as well as their use within an EPICS control
system.

MOTIVATION
Over the years, more and more powerful front end

computers have lead to increasing data processing rates.
Event and timing systems nowadays allow to attach
accurate synchronous nanosecond resolution time stamps
to data.

Many clients will not need every data update available.
Those clients will either want to reduce the update rate for
their subscription, or have the updates being correlated to
events from the event system, so that they are only getting
updates during phases they are specifically interested in.

The EPICS (Experimental Physics and Industrial
Control System) toolkit [3] and its network protocol,
Channel Access [4], only provide a small set of server-
configurable update rates, and only very limited
correlation between updates and a timing/event system.

SERVER-SIDE PLUG-IN FRAMEWORK

Considerations
When designing an extension to a widely-used, highly

scalable system, a number of considerations have to be
taken into account:
 Network compatibility: changing the on-the-wire

protocol of Channel Access should be avoided.
 Footprint: the extension should be modular and only

add minimal resource use on embedded systems.
 API compatibility: internal APIs should be left intact

to avoid breaking externally developed code.

Existing Update Mechanism
The existing update mechanism of the EPICS database

has been described in detail in [1] and is shown in Fig. 1.

At connection time, a set of per-client tasks and event
queues is set up. When the database processes an EPICS
record, events are generated from the subscription
definitions linked to the record, and put into the event
queue. The Channel Access event tasks take events off the
queue and ship it to the network.

Figure 1: Event Update Mechanism.

Plug-In Framework
The required additional processing of update events is

done in plug-ins, that a Channel Access client can request
to be inserted into the event stream when the connection
is made. These plug-ins have an API that allows for
receiving and generating event data, so they can be
stacked.

When update events are moving through the plug-in
stack, they are handed over to each of the plug-ins. This
allows the plug-in to change the event's data as well as the
meta data (type, size, time stamp, alarm information etc.)
The plug-in may also drop or create additional update
events.

Instantiation and configuration of plug-ins is controlled
by the client through JSON (JavaScript Object Notation)
channel name modifiers, that are transparently forwarded
through Channel Access to the IOC [2]. A JSON parser,
that has been added to the IOC core software recently, is
used for parsing the modifier.

__

*Work supported by U.S. Department of Energy (under contracts
DE-AC02-06CH11357 and DE-AC02-98CH10886), German
Bundesministerium für Bildung und Forschung and Land Berlin.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS020

Software technology evolution 827 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

The plug-in framework offers two levels for integration
of plug-ins:

A channel filter directly implements callbacks for the
JSON parser, and thus can use any transmitted JSON
structure as configuration.

A channel filter plug-in uses a simpler convenience API
provided by the framework. Configuration data is
restricted to key-value pairs of basic types, but the
framework does the parsing for the plug-in, and the
simple API allows for easy, efficient, and safe addition of
plug-in modules.

The event-related part of both APIs is equivalent.

Adding Plug-Ins to an IOC
All plug-ins have to register themselves with the

framework before use, specifying their name (that clients
will use for instantiation) and a pointer to their API
implementation. The plug-in registration can take place at
any time, even after IOC initialization. That would allow
plug-in code to be loaded and registered on-demand in a
running IOC.

Two Target Layers
The first part of the update mechanism, between record

and the event queues (shown green in Fig. 1), is done as
part of the EPICS database processing, i.e. at high
priority. CPU use in this context may keep other records
from processing and affect the IOC's real time behavior.

The second part of event generation, between the event
queue and the network (shown blue in Fig. 1), is done as
part of the Channel Access tasks, i.e. at low priority.
Database processing will not be affected by CPU usage in
this context.

Some plug-in functionality needs to be instantiated on
the database side. Plug-ins that reduce the update rate by
averaging or limiting should drop surplus events before
putting them on the event queue. Plug-ins that correlate
updates with an external event system have to do that
within the context of record processing.

Other plug-in functionality should be executed in the
low priority networking context. Plug-ins that manipulate
the data of a single update without relation to other
updates, e.g. extracting parts of an array, doing CPU
intensive mathematical operations, should avoid affecting
the real time database operation, and only do these
expensive operations on updates that are actually shipped
to the client.

The framework offers instantiation in both layers.
Fig. 1 shows the location of the two plug-in layers in the
existing update scheme.

PLUG-IN COLLECTION
A number of plug-ins of different complexity have been

implemented, to test function and validity of the
framework APIs.

ts – Timestamp “Now”
This pre-event-queue plug-in sets the time stamp of the

update to “now” (the current time).

Usage: myPV.A{“ts”:{}}

When subscribing to a field that does not cause record
processing, the data updates are stamped with the time
stamp of the record's last processing, which does not
show the time the field was updated. This plug-in solves
the issue.

dbnd – Deadband Throttling
This pre-event-queue plug-in implements deadband

based update throttling, similar to the mechanism in the
EPICS records.

Usage: myPV.RVAL{“dbnd”:{“m”:”rel”,”d”:7.5}}

As a plug-in it is available to any record field, offers
per-client configuration, and adds relative deadband
specification.

arr – Array Subset
This plug-in inserts itself in the post-event-queue layer.

It creates a sub-array with the specified start, increment,
and stop index.

Usage: myArray.VAL{“arr”{“s”:-5,”i”:2}}
myArray.VAL[-5:2:]

The second form is a shorthand notation added for
convenience.

sync – Synchronize with Timing System
This pre-event-queue plug-in synchronizes data updates

with internal or external timing systems by pushing
updates only under certain conditions.

Usage: myPV.VAL{“sync”:{“m”:”while”,”s”:”red”}}

Synchronization is done with respect to system state.
This is implemented by means of a small library that
offers an API through which named states can be defined
and set or reset. Figure 2 shows the effect of the six
available synchronization options with respect to a state:

Figure 2: Options of sync Plug-In.

 unless: All updates while state is false are being sent.
 while: All updates while state is true are being sent.

WEPKS020 Proceedings of ICALEPCS2011, Grenoble, France

828C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

 after: Only the first update after the transition of state
from true to false is being sent.

 last: Only the last update before the transition of
state from true to false is being sent.

 first: Only the first update after the transition of state
from false to true is being sent.

 before: Only the last update before the transition of
state from false to true is being sent.

IMPLEMENTATION EXPERIENCES
The major part of the framework implementation was

related to reorganization of the subscription definition and
data update structures. The subscription structure changes
allow per-plug-in and per-plug-in-instance configuration
data to be linked to a subscription. The data updates were
changed from statical allocation in fixed size lists inside
the event queue to heap-allocated structures that use free
lists to minimize memory allocation and deallocation at
run time.

While implementing the plug-ins described above, the
channel filter plug-in API was carefully extended and
optimized. In the current state, the individual plug-ins use
very little code (40-150 lines of C), and mainly implement
the code for their core functionality, i.e. their data update
modifications. Thus, implementation of the set of plug-ins
described above was fast and uncomplicated.

The two target layer design has proven to be the right
approach, as the plug-in designer can freely select the
appropriate context for a plug-in.

FOOTPRINT
The framework itself does not add much to the EPICS

record structures and code. When no plug-ins are used,
the additional memory and computing power
consumption is negligible.

Small and embedded EPICS systems will not run into
problems because of the plug-in framework.

STATUS
The framework has been developed based on EPICS

base version 3.14. The code base is complete and

working, unit test code has been written to verify most of
the functionality.

Next steps are merging the code into the version 3.15
development trunk, combined with a careful review of the
framework's memory allocation techniques and error
management – two areas where standards have changed
for EPICS base version 3.15.

FURTHER PLANS
Additional plug-ins will allow to throttle data updates

by setting the maximum update rate, execute atomic
put/get operations, and perform statistical operations on
array data.

Records will be able to set default configuration values
for certain plug-ins through info tags in the EPICS
database.

CONCLUSION
The addition of the server-side plug-in framework to

the EPICS toolkit adds valuable functionality to the IOC.
It opens yet another way to customize the system,
allowing to add exactly the operations needed for a
specific installation, and configure them at run time
individually for the appropriate connections.

This framework helps to overcome limitations of the
existing design, and allows the future addition of new
functionality without creating a major impact on
performance, memory footprint, or overall complexity.

REFERENCES
[1] R. Lange, A.N. Johnson, “Advanced Monitor/Subscription

Mechanisms for EPICS”, THP090, Proceedings of
ICALEPCS2009, Kobe, Japan, pp. 847-849.

[2] A.N. Johnson, R. Lange, “Evolutionary Plans for EPICS
Version 3”, WEA003, Proceedings of ICALEPCS2009,
Kobe, Japan, pp. 364-366.

[3] Experimental Physics and Industrial Control System,
http://www.aps.anl.gov/epics.

[4] J. Hill, R. Lange, “EPICS R3.14 Channel Access Reference
Manual”,
http://www.aps.anl.gov/epics/base/R3-14/12-docs/CAref.ht
ml.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS020

Software technology evolution 829 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

