

AN OBJECT ORIENTED FRAMEWORK OF EPICS FOR MICROTCA
BASED CONTROL SYSTEM

Z. Geng#, SLAC, Menlo Park, California, U.S.A.

Abstract
EPICS (Experimental Physics and Industrial Control

System) is a distributed control system platform which
has been widely used for large scientific devices control
like particle accelerators and fusion plant. EPICS has
introduced object oriented (C++) interfaces to most of the
core services. But the major part of EPICS, the run-time
database, only provides C interfaces, which is hard to
involve the EPICS record concerned data and routines in
the object oriented architecture of the software. This
paper presents an object oriented framework which
contains some abstract classes to encapsulate the EPICS
record concerned data and routines in C++ classes so that
full OOA (Objected Oriented Analysis) and OOD (Object
Oriented Design) methodologies can be used for EPCIS
IOC design. We also present a dynamic device
management scheme for the hot swap capability of the
MicroTCA based control system.

INTRODUCTION
Object oriented analysis and design method has become

more and more popular in software engineering field,
especially after the appearance of UML (Unified

Modelling Language) [1] and MDA (Model Driven
Architecture) [2].

EPICS has introduced object oriented (C++) interfaces
to most of the core services including the operating
system abstraction layer. But the major part of EPICS, the
run-time database, only provides C interfaces, which is
hard to involve the EPICS record concerned data and
routines in the object oriented architecture of the software.

The Object Oriented framework for EPICS (OOEPICS)
provides several base classes to encapsulate the details of
the record processing. The EPICS records and the devices
are designed as objects which enable the direct translation
of the UML model into EPICS applications. The
framework hides most of the details of the EPICS which
enable the user to develop his EPICS device driver
without knowing much of EPICS.

The OOEPICS framework was originally designed for
a MicroTCA based control system which requires
dynamic objects creation and deletion to support the hot
swap capability of the system. The EPICS base was
extended to be able to load the EPICS records
dynamically during run time.

Figure 1: Base classes of OOEPICS framework.

class OOEPICS Base Classes

epicsData

- name: string
- recordData: dbCommon *
- processNumber: long
- valChanged: int

+ initRecord() : virtual void
+ process() : virtual void
+ checkValueChange() : virtual void
+ forceProcess() : void
+ getProcessNumber() : long
+ valueChanged() : void

epicsDev ice

- name: string

ai

+ getValue() : double
+ putValue(double) : void

ao

+ getValue() : double
+ putValue(double) : void

wav eform

+ getValue(int) : data
+ putValue(data, int) : void

dev iceConfig

+ deviceCreate() : void
+ deviceAssociation() : void
+ deviceInit() : void
+ deviceSet() : void
+ deviceExtend() : void

dev iceManager

- deviceTypeList
- deviceInstanceList
- dataInstanceList
- internalDataInstanceList

+ deviceTypeRegister() : void
+ deviceInstanceRegister() : void
+ dataInstanceRegister() : void
+ internalDataInstanceRegister() : void
+ createDevice() : void
+ connectDevice() : void
+ initDevice() : void
+ setDevice() : void
+ extendDevice() : void
+ printDeviceType() : void
+ printDeviceList() : void
+ printRecordList() : void
+ printInternalDataList() : void
+ attachRecordToInternalData() : void
+ getInternalData() : void
+ putInternalData() : void

dev iceInterface

dev iceInterface_hw1 dev iceInterface_hw2

algorithm

otherBaseReocrd

Classes to be designed by the user
(suggested, but not part of the
framework)

+configures

+put value to

0..*

+directly controls hardware
via

0..*
+does calculation with

+refers to 0..*

+interrupts +controls hw via

+contains 0..*

+configures

+registers device to +manages devices via

0..*

#gengzq@slac.stanford.edu

Proceedings of ICALEPCS2011, Grenoble, France WEPKS003

Software technology evolution 775 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

OOEPICS FRAMEWORK
The OOEPICS framework consists of several base

classes and a tool for source code generation which
provides a template for the user application.

Base Classes
Figure 1 shows the base classes of the OOEPICS

framework.
The base classes setup the basic architecture of the

software. Any EPICS applications using the OOEPICS
framework can be designed by inheriting the base classes
for specific devices.
• epicsData is the base class for EPICS records and

device support routines, which realizes some
common functionality such as creating EPICS
database when the object is created. From that, child
classes are derived for all basic EPICS records, such
as ao, ai, waveform and so on.

• epicsDevice is the base class for the devices to be
controlled which may contains epicsData objects as
interfaces to the Channel Access clients.

• deviceConfig realizes common interfaces to
configure a device, including registering the device
type, creating instances of the device objects and
initializing the devices like starting up the threads for
the device control.

• deviceManager manages all devices and provides
IOC shell commands for device management.

EPICS Records
The key part of the OOEPICS framework is to define

an object for each record. The EPICS records were
designed more or less based on the object oriented
concepts. Table 1 compares the EPICS records and the
C++ classes.

Table 1: EPICS Records and C++ Classes

EPICS
Records

C++ Classes

Fields Attributes

Record Support Methods (platform independent)

Device Support Methods (platform dependent)

The class of epicsData is defined for the EPICS record.

They are linked together by the record name. The object
of the class will load the record and obtain the address of
the record data during creation and the record will get the
address of the object and use its methods as device
support.

EPICS Devices
The epicsDevice class is an empty class where the user

codes need to be implemented for the control of specific
devices.

The epicsDevice class may contain of:
• epicsData objects for uplink control and monitoring.

• Special logic to perform the device control, probably
state dependent.

• Algorithms to do signal processing, calibration,
optimization and so on.

• Common logical interfaces to interact with physical
device.

Device Manager and Configuration
The deviceManager and deviceConfig provide a

common way to create, associate, initialize and set up a
device control module in user IOC.

The deviceManager class also provides the EPICS API
that can be called in the IOC shell. In principle, the user
does not need to create any IOC shell commands.

The deviceConfig class should be realized by the
developer for specific devices.

Code Generation
The tool of “epics_driver_template” is designed to

generate the source code template from the EPICS
database file.

The tool will compile the database file into C strings
and then use them to initialize the epicsData objects. A
derived device class will be generated with the epicsData
objects as attributes. A derived deviceConfig class will be
generated which allows to define the procedure to create,
initialize and setup the device objects.

Development Procedure
Figure 2 shows the procedure for developing EPICS

device driver modules with the OOEPICS framework.
act Framewor...

Start

Define EPICS database with VDCT

databaseFile

Source codes generation

databaseFile

epcisDriverTemplate

Design software by filling the template

epicsDriverTemplate

deviceDriverModule

Add dev ice driver into IOC

deviceDriverModule

End

Figure 2: Design procedure with OOEPICS.

DYNAMIC RECORDS LOADING
MicroTCA is hot swappable which allows plugging in

new boards without rebooting the crate. The EPICS IOC
needs to support such features, which means, loading the
device drivers for the new boards without rebooting the
IOC software.

WEPKS003 Proceedings of ICALEPCS2011, Grenoble, France

776C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

The existing EPICS base does not support dynamic
record loading. All records must be loaded before
executing the iocInit() command. In order to support
loading records after iocInit(), the EPICS base needs to be
extended.

EPICS Base Extension
Figure 3 shows the architecture of part of the EPICS

base concern to the records.
class EPICS Base

«data_entity»
Record

«service»
lockSet

«service»
databaseAccess

«service»
channelAccess

«thread»
dbCaLink

«thread»
databaseScaner

«thread»
scanOnce

«thread»
scanX

notes
X = 10, 5, 2, 1,
0.5, 0.2, 0.1

«thread»
CAServer+uses

+process
records
through

+lock records through

+access
CA link
through

+uses

+uses

+access
DB link
through

+access

1..*

+belongs to+lock

1..*

Figure 3: EPICS base modules acting on the records.

Several challenges need to be resolved to load a record
during run time:
• Setup the locksets for the newly loaded records. If

the new records have no links, simply create new
lockset for each of them. If the new records have
links with existing records within the same lockset,
add the new records to the lockset. And if the new
records have links with existing records within
different locksets, merge the locksets and add the
new records to it.

• Convert PV links to DB link or CA link during
record initialization. When converting the PV links,
the destination records may have not been loaded yet,
so, when a new record is loaded, the record instances
loaded previously need to be reconsidered to finish
the link conversion.

• Modify the links of existing records. When a new
record is loaded, the existing records may want to
change their link to point to the new record. In this
case, the lockset of the record to be modified should
be split firstly and then merged with the lockset of
the new link destination.

For solving the problems listed above, a new source file
(dbRecordDynamic.c) is added to the EPICS base [3].

The OOEPICS framework and the dynamic records
loading functions have been successfully tested in a soft
IOC controlling a Newport motion control stage.

CONCLUSION
The OOEPICS framework provides a way to fully

access the EPICS records from the user code. The object
oriented technology can directly map to EPICS design. It
also provides a common way to create, initialize and
setup the device driver from the IOC shell. It also enables
the user to do EPICS development without knowing much
of EPICS, avoiding the long learning curve of EPICS.

 The dynamic records loading development provides a
good support for hot-swappable system control which
enables a complete EPICS based solution for MicroTCA
system in the following projects at SLAC.

REFERENCES
[1] http://www.uml.org/
[2] http://www.omg.org/mda/
[3] https://blueprints.launchpad.net/epics-

base/+spec/dynamic-record-loading

Proceedings of ICALEPCS2011, Grenoble, France WEPKS003

Software technology evolution 777 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

