
AGILE DEVELOPMENT AND DEPENDENCY MANAGEMENT FOR
INDUSTRIAL CONTROL SYSTEMS

B. Copy, M. Mettälä, CERN, Geneva, Switzerland

Abstract
The production and exploitation of industrial control

systems differ substantially from traditional information
systems; this is in part due to constraints on the
availability and change life-cycle of production systems,
as well as their reliance on proprietary protocols and
software packages with little support for open
development standards [1]. The application of agile
software development methods therefore represents a
challenge which requires the adoption of existing change
and build management tools and approaches that can help
bridging the gap and reap the benefits of managed
development when dealing with industrial control
systems. This paper will consider how agile development
tools such as Apache Maven for build management,
Hudson for continuous integration or Sonatype Nexus for
the operation of "definite media libraries" were leveraged
to manage the development life-cyle of the CERN UAB
framework [2], as well as other crucial building blocks of
the CERN accelerator infrastructure, such as the CERN
Common Middleware or the FESA project.

INTRODUCTION
Agile software development methodology characterizes

any development method that emphasizes incremental
deliveries, working software and fast response to change.
It emerged in the 1990s as a response to so-called
heavyweight methods, relying on long running project
plans, waterfall models and micromanagement.

Agile methods such as SCRUM or Extreme
Programming rely on the old maxim “a problem shared is
a problem halved”, by encouraging the collaboration of
small but cohesive development teams performing fast
evolving deliveries. Teams collaborating on a large
project will therefore continuously contribute project
deliverables to a “common pot”, from which a best-of-
breed product release can be composed at any time.

While agile methods emphasize the importance of
human interactions over automated processes and
customer collaboration over contract negotiations, it is not
surprising that software tooling quickly emerged to
support operating in such dynamic and fast-paced
environments.

Agile Tooling
It would be misleading to consider that agile

development can be effective solely with good will,
highly motivated independent teams and supporting
customers and stakeholders. Agile software tooling aims
at freeing software developers from repetitive tasks, while
providing immediate and up-to-the-minute feedback on
the status of their team's efforts. Developers can therefore

confidently test software changes, share their latest
progress with their fellow team members without any
manual intervention and in the end focus on providing
fast updates and concentrating on fulfilling customer
requirements.

Agile tooling is necessarily based on software
development processes that in most part, originated with
heavyweight project management approaches.

SOFTWARE DEVELOPMENT
PROCESSES

In order for agile teams to collaborate in a streamlined
and manageable manner, well-known project management
processes such as :

• Issue management
• Change management
• Dependency management
• Release management

must constantly collaborate and exchange information.
A short summary of each will help us understand their

importance, and provide examples of software packages
used at CERN to fulfil such demands.

Issue Management
This process focuses on collecting, prioritizing and

refining customer demands and internal product quality
feedback. Whether use cases, requests for new features or
defects identified in existing products, such inputs must
be classified and scheduled so as to reduce the risk of
unwanted side effects and ensure timely release delivery.
Change brought to a product must always take for
reference a prior request for such change (once again, to
reduce the risk of unidentified and unwanted
modifications that could break a working product).

Change Management
This process ensures that changes can be audited, and

grouped into coherent set of modifications. Sets of
modifications will eventually compose a release. Change
management is often seen as a burden by software
developers, but becomes a key activity when it is coupled
with release management – for instance, once a product
version is out in the wild, it is essential to know exactly
what differentiates this version from the one that worked
better a few weeks or months ago.

Dependency Management
As agile teams happily release ever improving

deliverables, being able to orchestrate dependencies
among these deliverables becomes an increasingly
difficult task. Establishing clear policies and allowing the
definition of dependency ranges (e.g. by specifying that

Proceedings of ICALEPCS2011, Grenoble, France WEPKS001

Software technology evolution 767 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Project A can tolerate any of the latest version of Project
B, starting from version 1.5 up to version 2.0 and
anything in between) becomes a very important aspect of
software project management. Considering that software
project increasingly rely on third-party open source
dependencies, it also becomes important to state and
monitor the provenance of such dependencies (i.e. if two
versions of the same library are available on the internet,
one from an untrusted source and one from the official
provider of the library, it is naturally preferable to obtain
it from the official provider).

Release Management
In order to facilitate software reuse (one of the

cornerstones of agile development), software artifacts
must be made available in a readily consumable form, so
that no time needs to be spent rebuilding such artifacts
using the original source (which, if change and
dependency management are kept consistent through an
established release policy, should of course always be
possible). In ITIL v3 [3], a library of best practices in
software infrastructure management, a repository used to
store readily consumable artifacts is referred to as a
Definite Media Library (DML). A DML acts as a
reference for all artifacts maintained by an organization,
and supports features such a search indexes, structured
navigation and queries, metadata management and access
rights policies enforcement.

Release management also becomes relevant in order to
deliver automatic updates to software end-users. Auto-
update capabilities have become a common feature of
modern operating systems and software packages aimed
at the general public.

As an example, the UAB toolset [5] (a development
suite for the generation of industrial control systems)
offers a Bootstrap utility, illustrated in Fig. 1, which upon
startup verifies whether any new versions of the UAB
components (such as new device type libraries, new
generation plugins etc...) have become available in a
central repository.

If new UAB components have been released, end users
are offered the possibility to download these components
and use them for the generation of their application.

Sonatype Nexus, a commercial DML implementation
that acts as an Eclipse P2 repository and a Maven
repository, offers a programmatic API (named Aether)
which allows to query and download repository contents.
The UAB Bootstrap component for instance relies on the
Aether API to determine whether new UAB components
(in effect, Maven artifacts deployed in Nexus) are
available and to download them.

Figure 1: The UAB Bootstrap (using the Aether API).

Continuous Integration
Continuous integration is a quality process that

provides constant feedback on changes performed by
developers. Coupled with change management, it allows
at any point to ensure that developers are informed of
regressions (or build breakage) they might introduce in
their project.

PROCESSES INTEGRATION
In the context of the UAB project and the LHC

Accelerator complex, CERN employs a variety of
software packages that support the previously enumerated
processes, including :

• Atlassian JIRA for issue management
• Subversion (SVN) for change management
• Apache Maven build for dependency

management
• Sonatype Nexus as a definite media library

and release repository for Maven and
Eclipse dependencies.

• Hudson / Atlassian Bamboo for
continuous integration

This best-of-breed selection mixing open-source software
with commercial tools operating under various licenses
poses necessarily some integration issues. Navigating
from one information source is obviously quite possible,
as each tool provides navigation links of some sort to its
peer processes – but happens to be quite cumbersome
when investigating regression issues, plain bugs or
releases of insufficient quality due to failure in change or
issue management processes.

The CSAR project therefore defines a data format and
offers tools that greatly simplify data extraction,
navigation and visualization of engineering process
related information (when investigating the cause for the
introduction of a regression or the presence of a new bug).

Resource Description Framework (RDF)
RDF is a meta-model introduced by the W3C to unify

data and meta-data in web-based documents. RDF relies
on subject-object-predicate expressions to embed meta-
meaning in ordinary data, allowing the data to be
processed and leverage by a machine.

RDF acts as an ideal lingua franca between our various
engineering process support tools, allowing us to harvest
all our information and collate it in a navigable way.

WEPKS001 Proceedings of ICALEPCS2011, Grenoble, France

768C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Data Visualizations and the Exhibit Framework
Data visualizations represent large amounts of

information in an immediately understandable form.
Maps, pie charts or tables are traditional visualizations,
but others such as heat maps or sparklines can also deliver
great expressiveness. In any case, visualizations are
decoupled from the data they represent.

The MIT Exhibit framework offer a generic way to
represent, query, filter and visualize RDF data. The CSAR
project leverages Exhibit and integrates a new
visualization yet not supported by the framework for the
representation of dependency trees.

Exhibit Reports Build Integration
The CSAR project provides an Apache Maven site

plugin – which seamlessly integrates engineering process
information into a web-based Maven documentation site
[4].

This is particularly useful for continuous integration
software packages that support Maven but would not
necessarily understand RDF or be able to handle the
Exhibit framework.

Fig. 2 presents an example of a Maven generated
documentation site integrating an Exhibit report. Once
RDF data is provided to Exhibit, the framework
automatically generates the required user interfaces
elements such as filters and navigation links.

Figure 2: Web-based Maven-generated documentation site with interactive dependency tree and filter fields.

The Exhibit framework also introduces new
visualization concepts such as the Timeline visualization,
a Javascript widget that allows to browse time-based
events, making it particularly suitable for reviewing SVN
commit activity or JIRA activity.

Fig. 3 and 4 provide examples of Timeline
visualizations as generated by Exhibit according to the
RDF data collected by the CSAR collection plugins.

Figure 3: Timeline visualization of SVN activity.

Figure 4: Timeline visualization of JIRA activity.

Timeline visualizations in the Exhibit framework
provide navigation links and popup windows which are
automatically derived from RDF data.

DATA INTEGRATION
The CSAR project provides Java executables that can

be integrated as part of a build process (using their
respective Maven plugin wrappers) and extract RDF

Proceedings of ICALEPCS2011, Grenoble, France WEPKS001

Software technology evolution 769 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

information from our various engineering process support
systems (JIRA, Maven metadata, Nexus, Subversion).

Once in a unified RDF format, data integration is a
matter of collating files together and transforming them to
web-friendly RDF dialects (known as Exhibit JSON).

The generation of Exhibit user interface and navigation
links is then simply a matter of configuration.

CONCLUSIONS
Integrating software engineering process data sources is

useful in order to obtain a global vision of development
and release activities. While most engineering process
deliver access to structured data, integrating and
correlating this information is currently a non-trivial task.

While our usage of RDF as a common data format has
certainly proven a workable approach, certain limitations
subsist in the current support of RDF. The Exhibit
framework for instance was designed highly interactve
representation of low volumes of information. A sample
extraction of the UAB project activity over the course of
14 months, totalling about 600K lines of code, yielded a 5
megabytes Exhibit JSON input file containing 9275
records, which the Exhibit framework handles with
difficulty (requiring a 20 seconds initial startup time and
delivering occasional sluggish data filtering
performances).

A complete rewrite of the Exhibit framework (Exhibit
v3) is interestingly under way in order to ease the
integration of third party visualizations and make it able
to cope with datasets gathering more than 5 millions of
records.

REFERENCES
[1] R. Barillère, Ph. Gayet, "UNICOS A Framework to

build industry-like control systems, principles and
methodology ", ICALEPCS 2005, Geneva,
Switzerland, WE2.2-6I

[2] M. Dutour, "Software factory techniques applied to
Process Control at CERN", ICALEPCS 2007,
Knoxville Tennessee, USA, http://www.JACoW.org.

[3] APM Group, “What is ITIL ?”, 2007-2011,
http://www.itil-
officialsite.com/AboutITIL/WhatisITIL.aspx

[4] Apache Maven Project, “Guide to creating a
documentation site“,
http://maven.apache.org/guides/mini/guide-site.html

[5] B. Copy et al., “Model Oriented Application
Generation for Industrial Control Systems”,
ICALEPCS 2011, Grenoble, France, WEAAULT02

[6] Massachusetts Institute of Technology (MIT), “The
Exhibit Framework”, 2011, http://www.simile-
widgets.org/exhibit3/

WEPKS001 Proceedings of ICALEPCS2011, Grenoble, France

770C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

