
RUNNING A RELIABLE MESSAGING INFRASTRUCTURE
FOR CERN’S CONTROL SYSTEM

F. Ehm, CERN, Geneva, Switzerland

Abstract
The current middleware for CERN’s Controls System

is based on two implementations: CORBA-based
Controls MiddleWare (CMW) and Java Messaging
Service (JMS). The JMS service is realized using the open
source messaging product ActiveMQ and had became an
increasing vital part of beam operations as data need to be
transported reliably for various areas such as the beam
protection system, post mortem analysis, beam
commissioning or the alarm system. The current JMS
service is made of 18 brokers running either in clusters or
as single nodes. The main service is deployed as a two
node cluster providing failover and load balancing
capabilities for high availability. Non-critical applications
running on virtual machines or desktop machines read
data via a third broker to decouple the load from the
operational main cluster. This scenario has been
introduced last year and the statistics showed an uptime of
99.998% and an average data serving rate of 1.6GByte
per minute represented by around 150 messages per
second.

Deploying, running, maintaining and protecting such
messaging infrastructure is not trivial and includes setting
up of careful monitoring and failure pre-recognition.
Naturally, lessons have been learnt and their outcome is
very important for the current and future operation of
such service.

THE CERN CONTROL SYSTEM
Today, the CERN control system is constructed as a

three-tier architecture with real-time processes reading
signals from the equipment, data processing services and
graphical interfaces to display the data.

The signals produced by the accelerator equipment are
read out by real-time C++ processes running on around
1600 so-called Front End Computers (FEC) and
published further to higher level services where it is
filtered, evaluated or correlated with other data. The
elements in the last and highest level of this architecture
are Graphical User Interfaces (GUI) mostly written in
Java which display the data or let operators in the CERN
Control Centre (CCC) take direct control on certain
equipment by enabling them to set hardware parameters.

All involved components communicate via the Controls
MiddleWare (CMW) to publish and/or exchange data. It
is actually composed of two products: an in-house
developed CORBA [1] based solution (RDA) and
ActiveMQ [2], an open source implementation of the
Java Messaging Service (JMS) [3] API.

RDA is implemented in C++ and Java and provides the
point-to-point communication between the involved peers

using a physical connection. This allows low latency with
a high grade of control. The network and CPU load
caused by distributing the data to the recipients resides on
the publishing instance.

ActiveMQ is written in Java and was released the first
time in 2004 and is in use at CERN for Beam Controls
since 2005. It implements the JMS 1.2 specification and
fulfils the Message Oriented Middleware paradigm where
the communication between sender (producer) and the
recipient (consumer) is relaxed by the introduction of an
intermediary component (messaging broker). By using
the JMS API application modules can be distributed over
heterogeneous platforms and thus reduces the complexity
of developing applications that span multiple operating
systems and communication protocols. Producers publish
data to the brokers and consumers register their interest in
specific messages via the Publish-Subscribe (Topic) or
Point-to-Point (Queue) mechanism. It is then the broker’s
responsibility to distribute the data reliably.

As a result of this intermediary broker and due to the
additional network hop the communication latency
increases. However, for the involved systems of the
CERN Controls System this latency is acceptable.

Figure 1: Usage of the Control System Middleware.

As shown in Fig. 1 the ActiveMQ infrastructure is

deployed for service to service and service to GUI
communication. CMW enables direct communication
such as sending commands, tuning hardware equipment
and monitoring their parameters. Although not required,
data processing services using JMS are exclusively
implemented in Java and services which use RDA may be
C++ processes as well. In both cases the Java API for
Parameter Control (JAPC) is used to abstract the
underlying middleware.

WEPKN006 Proceedings of ICALEPCS2011, Grenoble, France

724C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

Choice of a Centralized Messaging System
The main reason for having a messaging system such as

ActiveMQ acting as a relay is the clear advantage of
outsourcing the work of data distribution to a dedicated
entity which is actually made for such a purpose. It
originates from the stock market system where the same
technology is used to serve thousands of consumers. The
control system at CERN does not reach this number but
shows very similar requirements in terms of flexibility,
scalability and robustness.

CURRENT DEPLOYMENT
The current deployment of ActiveMQ installations

consists of 14 brokers used for production and 4 for
development. Depending on a project’s needs either a
single broker or a broker cluster for failover and load
balancing purposes is set up. A cluster consists of usually
two or more interconnected brokers which exchange
information about producers and subscribers to forward a
message if required. In case one of the brokers crashes
clients automatically reconnect to another one in the same
cluster.

Figure 2: Overview of the Messaging Service.

As Fig. 2 illustrates there are currently 3 main clusters

installed for selected middleware services such as the
Software Interlock System (SIS) and the Beam Loss
Monitors (BLM) system. The third one is called JMS-CO-
PRO and is shared among projects. Alternatively, a
project dedicated broker is deployed on the same machine
as the related middle tier server. Because these are
deployed as single instances it is irrelevant to have a
redundant broker service (and hence a higher
management load). Assigning

As Fig. 2 also shows that a data forwarding bridge to a
broker for non-operational clients has been deployed.
These clients are GUIs which are not used for beam
operations but by developers or experts or as information
displays running on windows terminal servers or on
virtual machines. Data is forwarded from the main JMS
Service to this public read out broker which again
redistributes the data to the subscribers. This setup
provides several advantages:

 First, a separation of critical clients from non-critical
ones allows reducing the additional load caused by
latter noticeably.

 Secondly, it enables reading data from outside the
closed technical network without exposing the main
service machines but a single broker.

 And thirdly, it gives the possibility to instantly
remove load from the main service by shutting down
the public read broker.

MONITORING
Like other services a messaging broker system needs to

be carefully monitored to proactively identify upraising
problems and to react to them accurately and
immediately. Not only default machine metrics such as
network, CPU and disk usage take part in this monitoring
activity but additionally specific tools have been
developed to collect more – broker specific - information.

Instrument JMX and Sending of a Test Message
One vital prerequisite for such tools is to be able to get

an insight view into a running broker. ActiveMQ provides
this functionality via the Java Management Extensions
(JMX) [4] interface and it is easily integrated with
existing diagnostic and monitoring tools. Only a subset of
the exposed metrics is actually chosen to evaluate the
broker health periodically. Information such as memory
and storage usage as well as the processed messages since
the last iteration is available. However, these numbers
may not be sufficient to make a complete statement on the
broker condition. Therefore, the message processing
speed (mps) is measured every 5 minutes to evaluate the
time a message takes to go through a broker or a full
broker cluster. This is done by an external monitoring
agent which sends and reads a test message and compares
the submission and receive timestamp. Analogue to the
connected applications a high latency is detected very
quickly and subsequently treated as a potential problem.

Thresholds are used to determine the severity of the
result to then inform service managers via eMail and the
Short Message Service (SMS). As an example: an mps of
100ms would correspond to a warning, 1000ms to an
error.

Topic Monitoring Tool
An in-house developed Topic Monitoring Tool (TMT)

listens actively to all messages and stores statistics like
throughput and size using the Round Robin Tool [5]
database technology. This again can be used to visualize a
history view on the average values like MRTG [6]. An
example of the usage of this view is shown in Fig. 3. A
producer sending at irregular high data rate was
recognized (left red area) and a restart subsequently
solved the problem (green area).

Proceedings of ICALEPCS2011, Grenoble, France WEPKN006

Distributed computing 725 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 3: Detecting a producer problem using the TMT.

PERFORMANCE AND RELIABILITY
When it comes to performance and reliability

ActiveMQ has proven to be very stable in the present
environment and configuration. In 2010 the JMS-CO-
PRO and BLM services handled together up to 2.57TByte
per day in data volume and reached a service availability
of 99.998%. This includes downtimes due to kernel and
machine upgrades. Single broker services showed a lower
availability in average because of missing redundancy.
But 210 consecutive days of uptime with an average of
120 messages per second as one example shows that a
single broker instance is very reliable.

Another example for load balancing is the BLM
system: it sends out messages of 2 MByte which are read
by a large set of consumers. While investigating delay of
messages it turned out that the network card in the broker
machine was actually a bottleneck. As a consequence, a
second broker on a separate machine was deployed to
balance the network load. Alternatively, binding the
second broker to a second installed network card in the
same machine would have had the same effect.

MESSAGE USAGE PATTERNS AND
SERVICE LEVEL AGREEMENTS

The usage pattern varies from rather small messages at
high frequency (1KByte payload at 100Hz) to large
messages at low rate (2MByte payload at 0.5Hz). In case
of latter for example, around 25 clients constantly request
this data. Other services such as the Post Morten Analysis
(PMA) system show a very different usage scenario: they
send high bursts of small messages only after a beam
dump.

Depending on the characteristics of the published data
the number of reading clients may vary. In theory, all
CCC consoles may read all data at the same time.
However, in practice this is not the case. Due to the
organization of the CCC an average of 20 GUIs is taken
for the data distribution load. This means one message
has to be delivered to 20 consumers.

Service Level Agreements
In order to protect a customized messaging service for a

project Service Level Agreements (SLA) had been
established. They describe on a high level the project’s

needs and message usage patterns and thus help to decide
how to realize these requirements. Both sides then have to
agree on the SLA and make sure that the rules are
respected.

For example: the BLM SLA states that the messaging
service must sustain a constant rate of 2MByte payload at
1Hz with 20-30 clients. If much more data is sent than
agreed then there is no guarantee that the service will
remain stable.

These SLAs also allow tracking of changes of the
project’s requirements and ease setting up monitoring
thresholds. They are based on the experience from the
Large Hadron Collider (LHC) startup in March 2010
where the amount of data which was estimated was
exceeded by a factor of 2.5 (see Fig. 4). A possible
messaging service failure was prevented by a precautious
upgrade of the machines. This case shows that the
prediction for load in such an environment with a great
variety of applications (and developers) is not always
definitive and final.

Figure 4: Data demand during start up of the LHC.

PROBLEM ANALYSIS IN PRODUCTION
When having a system which is vital for (beam)

operations it is important to be able to quickly analyse a
problem to reduce costly downtime. In contrary to a
point-to-point communication like CMW a centralized
messaging system always faces the problem of being a
potential single bottleneck. However, there is also good
side. Because of this single point of failure the problem
analysis is limited to a fewer places.

For ActiveMQ there are the following instruments for
such investigations:
 JMX console showing very detailed information

like connections, subscriptions, etc.
 Test clients for reading data from topics
 Changing broker log level without a restart
 Dump of available data via JMX to a SQLite [7]

database for easier extraction
The experience shows that most problems caused by an

ActiveMQ broker were based on changes which were
introduced shortly before (e.g. upgrade or configuration
changes).

There is also the much more dangerous possibility that
an effect occurs days or weeks later. For example: a new

WEPKN006 Proceedings of ICALEPCS2011, Grenoble, France

726C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

broker version was tested in an integration test bed before
going to production. After the upgrade the service ran
smoothly for the next weeks but failed at a certain point
due to a bug in the configuration settings of the broker
software. As a result, the JMS-CO-PRO cluster was not
available anymore to the clients and many critical
services stopped working.

 Unfortunately, there is no straight solution which is
feasible in time and effort for such situations. As for
many other services it must be noticed that such incidents
may happen (although rarely) despite all monitoring and
precautious actions which may reduce the probability but
never eliminate such cases.

More important is the ability to know strategies and
solutions to quickly resolve the situation.

SUMMARY
ActiveMQ was and is a good choice for decoupled

messaging for the CERN’s Control System and has
proven to be very stable. In particular the strength of
scaling linearly makes it inevitable for an environment
where the number of reading applications is very dynamic
and data demand is growing at the same time. Because
unexpected high load is possible it is important to
dimension machine resources sufficiently.

In this context, monitoring is a vital part of operation
and the evaluation of the recordings must take influence
on future deployment decisions. Effective service
downtime is reduced by deploying a messaging service
per usage domain or project.

It is highly recommended to set up SLAs to track the
(growing) user needs. They help to adapt the system to
usage scenarios before they are put into production and
support setting up monitoring thresholds.

REFERENCES
[1] CORBA, Common Object Request Broker

Architecture, OMG, http://www.omg.org
[2] Apache ActiveMQ: http://activemq.apache.org/
[3] JMS Java Messaging Service, http://www.oracle.com
[4] Java Management Extension, Oracle:

http://www.oracle.com
[5] Round Robin Tool, Tobias Oetiker:

http://oss.oetiker.ch/rrdtool/
[6] MRTG, The Multi Router Traffic Grapher,

http://oss.oetiker.ch/mrtg/
[7] SQLite Database: http://www.sqlite.org/

Proceedings of ICALEPCS2011, Grenoble, France WEPKN006

Distributed computing 727 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

