
EXPERIENCES IN MESSAGING MIDDLEWARE FOR
HIGH-LEVEL CONTROL APPLICATIONS*

Nanbor Wang†, Svetlana Shasharina, James Matykiewicz, and Rooparani Pundaleeka
Tech-X Corporation, Boulder, CO 80303, U.S.A.

Abstract
Existing high-level applications in accelerator control

and modeling systems leverage many different languages,
tools and frameworks that do not interoperate with one
another. As a result, the accelerator control community is
moving toward the proven Service-Oriented Architecture
(SOA) approach to address the interoperability challenges
among heterogeneous high-level application modules.
Such SOA approach enables developers to package
various control subsystems and activities into “services”
with well-defined “interfaces” and make leveraging
heterogeneous high-level applications via flexible
composition possible. Examples of such applications
include presentation panel clients based on Control
System Studio (CSS) and middle-layer applications such
as model/data servers.

This paper presents our experiences in developing a
demonstrative high-level application environment using
emerging messaging middleware standards. In particular,
we utilize new features in EPICS v4 and other emerging
standards such as Data Distribution Service (DDS) and
Extensible Type Interface by the Object Management
Group. We first briefly review examples we developed
previously. We then present our current effort in
integrating DDS into such a SOA environment for control
systems. Specifically, we illustrate how we are integrating
DDS into CSS and develop a Python DDS mapping.

BACKGROUND AND INTRODUCTION
Accelerator control systems (ACS) coordinate the

interactions among control hardware, data acquisition
instruments, logging and data storage devices, and
operator's interface. High-level accelerator control
applications encompass activities such as operator control
panels, tune measurement, orbit control, parameter
save/restore, feedback, optic optimization, and parameter
scanning that allow physicists and operators to control
and reason accelerator behaviors in physically meaningful
abstractions. There exist many tools and frameworks to
help bring modern software engineering practices to the
development and integration of lower-level hard real-time
controls and the high-level soft real-time applications with
great success.

Emerging Trends and Challenges
Control systems are often built on top of a set of

existing tools and platforms that suit the needs of their

target platforms. For examples, the EPICS [1] toolkit
provides a standard for low-level controller architecture
and a set of interoperable tools and engineering
applications to assist control system developments.
Depending on the scale of the target accelerator, high-
level applications are often developed as a monolithic
Graphical User Interface (GUI), a simple script, or a
library routine. As in the case of generalized ACS control
environments, many tools and frameworks such as
Unified Accelerator Language (UAL) and Matlab Middle
Layer Toolkit (MMLT), are available to assist the
integration and interaction among high-level applications
and device controllers (built, e.g., using EPICS.)

All the different development environments and tools
do not generally interoperate with one another. This is not
a major issue for small- or medium-sized accelerators.
However, such ad hoc approach no longer scales for
modern large-scale accelerator facility such as the new
NSLS-II, Project X, and the Intensity Frontier. Several
Design Reports have called for a separate “service
tier/middle layer” to provide devices and functional
abstractions as units of integration.

SOA: Service-Oriented Architecture
SOA [2,3] has gained widespread acceptance in the

business/enterprise software world as it has shown to
facilitate the integration and composition of disparate
software services across enterprises and businesses
boundaries. Applying SOA principles in ACS is a
promising approach in isolating and managing the
complexity. In fact, many existing accelerator control
systems have already adopted many SOA guidelines and
principles. To address the needs and challenges of next-
generation, large-scale accelerator control systems, we are
enhancing the SOA environment for next-generation
large-scale accelerator control systems to manage the
complexity and contain the cost of developing future
accelerator control systems and upgrading existing ones.

Message-Oriented Middleware
Traditionally, a SOA is often constructed on top of

point-to-point request-reply, client-server communication
middleware technologies. Middleware serves as the
standard communication bus among different service.
Examples of well-established SOA middleware include
SOAP-based and RESTful Web Services, CORBA and
Java RMI. However, there are still limitations with these
point-to-point, request-reply, RPC-styled communication
model as they impose scalability issues as the size and
complexity of accelerator control systems grow.

The emerging DDS [4] is a new class of Message-
Oriented Middleware (MOM) standard specified by the

 __
*Work partially supported by US Department of Energy under contracts

#DE-FG02-08ER85043 and #DE-SC-0000842, and Tech-X
Corporation.

†nanbor@txcorp.com

WEPKN005 Proceedings of ICALEPCS2011, Grenoble, France

720C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

Object Management Group (OMG). DDS complements
RPC-styled client-server middleware and address their
many limitations. DDS is a natural extension to many
existing accelerator control frameworks. Furthermore,
because DDS inherently supports many quality-of-service
(QoS) policies such as message priority, rate, reliability,
and deadline, that are necessary for mission-critical
applications, DDS is a natural selection to act as the
alternative service-bus in a SOA for control systems.

Figure 1 illustrates a SOA for high-level accelerator
environment where applications exchange data using
DDS as the common standard service bus. As shown in
the figure, client applications can readily act as gateways
to another enterprise service bus such as Web Services.

Figure 1: SOA for high-level applications over DDS

DESIGNING DDS APPLICATION
THROUGH PERFORMANCE TESTING
Because there are many ways to configure a DDS

system, to better emulate various operation scenarios
easily, we developed a DDS performance test suite and
performed benchmarking tests with it. With the test
framework, users will be able to develop various DDS
runtime scenarios and experiment with various QoS
policy combinations and evaluate their effect to the
overall system performance. We design the test suite to be
portable so that ACS developers can evaluate different
DDS implementations easily.

Our performance test suite is built on top of the generic
benchmarking application similar to the open-source
Touchstone performance tool. Touchstone’s
benchmarking application provide the mechanism to
instantiate test components such as transceiver and
transponder for latency test, via special DDS messages for
a set of control topics. Users can design and instantiate
tests of different scales and with different combinations of
QoS policies easily. Such approach allows users to create
scenario-based performance evaluations easily.

Accessing the performance of messaging systems and
overall applications provide critical information to help
making key design decisions such as:
 Selection of DDS implementations: Different DDS

implementations make different tradeoffs and adopt
different implementation strategies to realize the
movement of data from publishers to subscribers

according to the QoS policies specified by all the
entities involved. Some implementations also make
such strategies configurable. Therefore, certain
implementations or configurations perform better
under certain operation environment while others ay
scale better.

 Assisting in DDS configuration: DDS supports a rich
set of QoS policies. Configuring a system using
different sets of policies can affect the overall
performance in different ways. For example, setting
priority on one data stream can affect the overall
behaviors of other data streams. Being able to
perform tests to observe system behaviors at similar
scales can provide essential guidance on design
strategies.

EXAMPLE MIDDLE-LAYER SERVERS
To demonstrate the three-tier high-level application

architecture, we implemented a general-purpose web-
based optimization service with the help from our
collaborator at Brookhaven National Lab (BNL). The
service allows users to perform Twiss calculation and
lattice optimization over the web.

Figure 2 illustrates the overall architecture of such a
general-purpose web-based optimization�service. This
simple service allows accelerator physicists to submit
lattice and optimization files to the service and returns the
visual results of twiss calculations. This example provides

an example “Software as a Service (SaaS)” prototype. It
demonstrates the core idea on SOA using DDS and lays
down the foundation for further, more complicated
services. We implemented the prototype service using
both MAD-X and UAL as the underlying compute engine.
For messaging between the Web Server and the
Optimization Server, we used both DDS and the
experimental EPICS-DDS [5].

INTEGRATING DDS WITH THE
CONTROL SYSTEM STUDIO

Fermilab’s Intensity Frontier examplifies another usage
scenario for a dual-message-bus SOA. There, they
employ both DDS and EPICS in the control system.
Subsystems that require real-time responses are built on

Figure 2: Example architecture of a middle-layer server.

.

Proceedings of ICALEPCS2011, Grenoble, France WEPKN005

Distributed computing 721 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

top of EPICS. Higher-level applications use DDS instead
as the messaging mechanism.

There is a need to aggregate information and control
various systems running on either EPICS or DDS
together. Therefore, we are developing plug-ins for
publishing and subscribing DDS topics from within the
Control System Studio (CSS) [6]. The prototype plug-ins
are modeled after org.csstudio.platform.libs.epics and its
UI plug-ins. Another com.txcorp.soaac.css.dds.pv plug-in
provides methods for publishing and subscribing topic-
specific variable. Using our prototype, CSS widgets can
subscribe or publish to variables as DDS topics using the
familiar URI syntax such as “dds://topicname”.

Although our prototype plug-ins demonstrate that DDS
can be integrated into the CSS environment seamlessly,
there are several limitations in our current design that we
are working to improve:

1. Currently, we model the DDS topic structure
closely after the EPICS PV data structure. We are
working to relax this restriction so that a widget
can subscribe to arbitrary variable within a DDS
topic, e.g., “dds://device/part#control_point”.

2. For a CCS application to subscribe to certain
topics, their type-specific implementation must be
generated and compiled into a .jar file, which then
must be loaded into the application. We are
working on adding support for a CSS application to
read in topic structure and QoS definitions as XML
files during runtime. This enhancement will
eliminate the needs to compile and load application
specific code into the CSS library.

SUPPORT PYTHON-DDS MAPPING
(PYDDS)

Python language is a very versatile dynamic, object-
oriented language that has gained great popularity among
sceintists. Many scientists have expressed interests in
interacting with DDS-based systems directly from within
their Python codes. We have previously experimented
with using DDS in Python. As illustrated in Fig. 3, our
previous implementation of Python DDS support wraps
all the topic-specific C/C++ codes generated by DDS
tools into Python using SWIG or Boost.Python.

Although this approach serves the purpose, it is not
compatible with Python’s dynamic programming style. In
particular, extra-steps outside of Python are required to
generate the topic-specifc python mapping. Furthermore,
when topic structures change, these wrappers have to be
regenerated and repackaged in order for the actual Python
application to use them. All these limitations interrupt the
natural workflow of programmers and are not compatible
the the dynamic language nature of Python.

In order to address these limitations, we are developing
a new Python DDS (pyDDS) implementation. As shown
in Fig. 4, we have moved the generation of topic-specific
codes into Python. These topic-specific codes in-turn
interace with generic DDS services. Using this approach,
applications can source in topic structure definitions at

run time and generate the topic-specific readers and
writers on the fly as pure Python classes. By eliminating
the need to generate and load topic-specific wrappings in
separate steps, the new pyDDS library is more compatible
with dynamic programming nature of Python and also
more easily accepted by Python developers.

The following listings demonstrate how to interact with
a DDS data topic from within Python:

First thing to do to use pydds
import pydds;

To Join a Data Domain:

Uers defines the dataspace runtime
and pass it in to various other
operations that need it.
 myDataspace =
 pydds.connect_dataspace
 (“Domain name”, “Partition name”)

To Manipulate QoS Policies:

myQoS = pydds.create_qos()
myQoS.set_reliable (3000000)
myQoS.set_transient()
myQoS.set_keep_last (3)

To Create Topic Reders/Writers:

Figure 3: A straightforward Python DDS wraps generated
topic-specific codes.

Figure 4: The new pyDDS implementation takes
advantage of Python's dynamic language features.

WEPKN005 Proceedings of ICALEPCS2011, Grenoble, France

722C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

Creating/Finding a topic in global
data space. Last argument specifies
the URI to the topic definitions
helloTopic = pydds.createTopic
 (“TopicName”,
 myDataspace,
 myQoS,
 file:///HelloWorld.idl#HelloTopic)

Now create reader/writer objects
helloReader =
 helloTopic.create_reader(readerQoS)
helloWriter =
 helloTopic.create_writer(writerQoS)

To Write and Read Data Samples:

Creating a sample
helloSample =
 helloTopic.create_sample
 (message = “John Smith”,
 repeat = 3)

Publishing the sample
status =
 helloWriter.write (helloSample)

Simple read/take
[samples, infos] = helloReader.read()
sys.stdout write(samples[0].message)

We plan to model listener-based callback data read

interface after the Twist or Trellis libraries. Furthermore,
we would also like to take advantage of the emerging
eXtensible Type Standard which is being ratified by the
OMG [7,8].

CONCLUDING REMARKS
This paper describes how a dual-service-bus SOA

provides an ideal development environment that promotes
modulization of high-level application components and
facilitates dynamic composition of high-level
applications. In the context of the high-level application
environment, it means flexibility in selecting and
connecting the most appropriate modeling algorithms and
programs. To support such use case, we are bringing the
next generation data-centric publish-subscribe
middleware called DDS to this environment by
investigating various usage scenarios and programming
patterns of DDS in ACS. Furthermore, we are developing
tools and libraries to enable ACS developers to leverage

the new technologies. We developed a DDS performance
test suite and used it to benchmark and evaluate various
open source and commercial DDS implementations. We
also implemented a set of example Web-based high-level
application on top of open source DDS implementations.

Other than demonstrating how a ACS can utilizes DDS
middleware technologies, we are also developing tools to
help facilitate the adoption of DDS. We implemented a
set of prototype plug-ins for Control System Studio to
monitor and emit DDS data stream. We also developed a
prototype Python mapping for DDS to enable Python
applications to participating in DDS data exchange. We
are in the process of hardening these prototypes and
enhance their robustness and usability.

ACKNOWLEDGMENTS
The authors would like to thank Nikolay Malitsky of

Brookhaven National Lab for his help in formulating the
middle-layer server examples. Similarly, we wish to
thank Jim Kolwalkoski, Marc Paterno, Kurt Biery, and
Erik Gottschalk of Fermilab for discussing the needs and
requirements of their projects.

REFERENCES
[1] L. Dalesio et al., “The Experimental Physics and

Industrial Control System Architecture,”
ICALEPCS’93, Berlin, Germany, October 1993,
http://www.aps.anl.gov/epics/

[2] Dirk Krafzig and Karl Banke and Dirk Slama.
Enterprise SOA – Service-Oriented Architecture Best
Practices. Prentice Hall, 2005.

[3] Eric Newcomer and Greg Lomow. “Understanding
SOA with Web Services,” Addison Wesley, New
Jersey, 2005.

[4] OMG, “Data Distribution Service for Real-time
Systems, Version 1.2,” formal/07-01-01,
http://www.omg.org/cgi-bin/doc?formal/07-01-01

[5] N. Malitsky et. al., “Prototype of a DDS-based High-
Level Accelerator Application Environment,”
ICALPCS09, Kobe, Japan, Oct 2009.

[6] Desy, SNS, BNL, “Control System Studio,” http://
http://css.desy.de/content/index_eng.html

 [7] OMG, “Extensible and Dynamic Topic Types for
DDS,” http://www.omg.org/spec/DDS-XTypes

[8] N. Malitsky et. al., “DDS XType-based Machine
Server,” ICALEPCS’11, Grenoble, France, Oct. 2011.

Proceedings of ICALEPCS2011, Grenoble, France WEPKN005

Distributed computing 723 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

