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Abstract 
Existing high-level applications in accelerator control 

and modeling systems leverage many different languages, 
tools and frameworks that do not interoperate with one 
another. As a result, the accelerator control community is 
moving toward the proven Service-Oriented Architecture 
(SOA) approach to address the interoperability challenges 
among heterogeneous high-level application modules. 
Such SOA approach enables developers to package 
various control subsystems and activities into “services” 
with well-defined “interfaces” and make leveraging 
heterogeneous high-level applications via flexible 
composition possible. Examples of such applications 
include presentation panel clients based on Control 
System Studio (CSS) and middle-layer applications such 
as model/data servers. 

This paper presents our experiences in developing a 
demonstrative high-level application environment using 
emerging messaging middleware standards. In particular, 
we utilize new features in EPICS v4 and other emerging 
standards such as Data Distribution Service (DDS) and 
Extensible Type Interface by the Object Management 
Group. We first briefly review examples we developed 
previously. We then present our current effort in 
integrating DDS into such a SOA environment for control 
systems. Specifically, we illustrate how we are integrating 
DDS into CSS and develop a Python DDS mapping. 

BACKGROUND AND INTRODUCTION 
Accelerator control systems (ACS) coordinate the 

interactions among control hardware, data acquisition 
instruments, logging and data storage devices, and 
operator's interface. High-level accelerator control 
applications encompass activities such as operator control 
panels, tune measurement, orbit control, parameter 
save/restore, feedback, optic optimization, and parameter 
scanning that allow physicists and operators to control 
and reason accelerator behaviors in physically meaningful 
abstractions. There exist many tools and frameworks to 
help bring modern software engineering practices to the 
development and integration of lower-level hard real-time 
controls and the high-level soft real-time applications with 
great success. 

Emerging Trends and Challenges 
Control systems are often built on top of a set of 

existing tools and platforms that suit the needs of their 

target platforms. For examples, the EPICS [1] toolkit 
provides a standard for low-level controller architecture 
and a set of interoperable tools and engineering 
applications to assist control system developments. 
Depending on the scale of the target accelerator, high-
level applications are often developed as a monolithic 
Graphical User Interface (GUI), a simple script, or a 
library routine. As in the case of generalized ACS control 
environments, many tools and frameworks such as 
Unified Accelerator Language (UAL) and Matlab Middle 
Layer Toolkit (MMLT), are available to assist the 
integration and interaction among high-level applications 
and device controllers (built, e.g., using EPICS.) 

All the different development environments and tools 
do not generally interoperate with one another. This is not 
a major issue for small- or medium-sized accelerators. 
However, such ad hoc approach no longer scales for 
modern large-scale accelerator facility such as the new 
NSLS-II, Project X, and the Intensity Frontier. Several 
Design Reports have called for a separate “service 
tier/middle layer” to provide devices and functional 
abstractions as units of integration. 

SOA: Service-Oriented Architecture 
SOA [2,3] has gained widespread acceptance in the 

business/enterprise software world as it has shown to 
facilitate the integration and composition of disparate 
software services across enterprises and businesses 
boundaries. Applying SOA principles in ACS is a 
promising approach in isolating and managing the 
complexity. In fact, many existing accelerator control 
systems have already adopted many SOA guidelines and 
principles. To address the needs and challenges of next-
generation, large-scale accelerator control systems, we are 
enhancing the SOA environment for next-generation 
large-scale accelerator control systems to manage the 
complexity and contain the cost of developing future 
accelerator control systems and upgrading existing ones. 

Message-Oriented Middleware 
Traditionally, a SOA is often constructed on top of 

point-to-point request-reply, client-server communication 
middleware technologies. Middleware serves as the 
standard communication bus among different service. 
Examples of well-established SOA middleware include 
SOAP-based and RESTful Web Services, CORBA and 
Java RMI. However, there are still limitations with these 
point-to-point, request-reply, RPC-styled communication 
model as they impose scalability issues as the size and 
complexity of accelerator control systems grow. 

The emerging DDS [4] is a new class of Message-
Oriented Middleware (MOM) standard specified by the 
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Object Management Group (OMG). DDS complements 
RPC-styled client-server middleware and address their 
many limitations. DDS is a natural extension to many 
existing accelerator control frameworks. Furthermore, 
because DDS inherently supports many quality-of-service 
(QoS) policies such as message priority, rate, reliability, 
and deadline, that are necessary for mission-critical 
applications, DDS is a natural selection to act as the 
alternative service-bus in a SOA for control systems. 

Figure 1 illustrates a SOA for high-level accelerator 
environment where applications exchange data using 
DDS as the common standard service bus. As shown in 
the figure, client applications can readily act as gateways 
to another enterprise service bus such as Web Services. 

 
Figure 1: SOA for high-level applications over DDS 

DESIGNING DDS APPLICATION 
THROUGH PERFORMANCE TESTING  
Because there are many ways to configure a DDS 

system, to better emulate various operation scenarios 
easily, we developed a DDS performance test suite and 
performed benchmarking tests with it. With the test 
framework, users will be able to develop various DDS 
runtime scenarios and experiment with various QoS 
policy combinations and evaluate their effect to the 
overall system performance. We design the test suite to be 
portable so that ACS developers can evaluate different 
DDS implementations easily. 

Our performance test suite is built on top of the generic 
benchmarking application similar to the open-source 
Touchstone performance tool. Touchstone’s 
benchmarking application provide the mechanism to 
instantiate test components such as transceiver and 
transponder for latency test, via special DDS messages for 
a set of control topics. Users can design and instantiate 
tests of different scales and with different combinations of 
QoS policies easily. Such approach allows users to create 
scenario-based performance evaluations easily. 

Accessing the performance of messaging systems and 
overall applications provide critical information to help 
making key design decisions such as: 
 Selection of DDS implementations: Different DDS 

implementations make different tradeoffs and adopt 
different implementation strategies to realize the 
movement of data from publishers to subscribers 

according to the QoS policies specified by all the 
entities involved. Some implementations also make 
such strategies configurable. Therefore, certain 
implementations or configurations perform better 
under certain operation environment while others ay 
scale better.  

 Assisting in DDS configuration: DDS supports a rich 
set of QoS policies. Configuring a system using 
different sets of policies can affect the overall 
performance in different ways. For example, setting 
priority on one data stream can affect the overall 
behaviors of other data streams. Being able to 
perform tests to observe system behaviors at similar 
scales can provide essential guidance on design 
strategies. 

EXAMPLE MIDDLE-LAYER SERVERS 
To demonstrate the three-tier high-level application 

architecture, we implemented a general-purpose web-
based optimization service with the help from our 
collaborator at Brookhaven National Lab (BNL). The 
service allows users to perform Twiss calculation and 
lattice optimization over the web.  

Figure 2 illustrates the overall architecture of such a 
general-purpose web-based optimization�service. This 
simple service allows accelerator physicists to submit 
lattice and optimization files to the service and returns the 
visual results of twiss calculations. This example provides 

an example “Software as a Service (SaaS)” prototype. It 
demonstrates the core idea on SOA using DDS and lays 
down the foundation for further, more complicated 
services. We implemented the prototype service using 
both MAD-X and UAL as the underlying compute engine. 
For messaging between the Web Server and the 
Optimization Server, we used both DDS and the 
experimental EPICS-DDS [5].  

INTEGRATING DDS WITH THE 
CONTROL SYSTEM STUDIO 

Fermilab’s Intensity Frontier examplifies another usage 
scenario for a dual-message-bus SOA.  There, they 
employ both DDS and EPICS in the control system. 
Subsystems that require real-time responses are built on 

Figure 2: Example architecture of a middle-layer server. 
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top of EPICS.  Higher-level applications use DDS instead 
as the messaging mechanism.  

There is a need to aggregate information and control 
various systems running on either EPICS or DDS 
together. Therefore, we are developing plug-ins for 
publishing and subscribing DDS topics from within the 
Control System Studio (CSS) [6].  The prototype plug-ins 
are modeled after org.csstudio.platform.libs.epics and its 
UI plug-ins.  Another com.txcorp.soaac.css.dds.pv plug-in 
provides methods for publishing and subscribing topic-
specific variable. Using our prototype, CSS widgets can 
subscribe or publish to variables as DDS topics using the 
familiar URI syntax such as “dds://topicname”. 

Although our prototype plug-ins demonstrate that DDS 
can be integrated into the CSS environment seamlessly, 
there are several limitations in our current design that we 
are working to improve: 

1. Currently, we model the DDS topic structure 
closely after the EPICS PV data structure.  We are 
working to relax this restriction so that a widget 
can subscribe to arbitrary variable within a DDS 
topic,  e.g., “dds://device/part#control_point”. 

2. For a CCS application to subscribe to certain 
topics, their type-specific implementation must be 
generated and compiled into a .jar file, which then 
must be loaded into the application. We are 
working on adding support for a CSS application to 
read in topic structure and QoS definitions as XML 
files during runtime. This enhancement will 
eliminate the needs to compile and load application 
specific code into the CSS library. 

SUPPORT PYTHON-DDS MAPPING 
(PYDDS) 

Python language is a very versatile dynamic, object-
oriented language that has gained great popularity among 
sceintists. Many scientists have expressed interests in 
interacting with DDS-based systems directly from within 
their Python codes. We have previously experimented 
with using DDS in Python. As illustrated in Fig. 3, our 
previous implementation of Python DDS support wraps 
all the topic-specific C/C++ codes generated by DDS 
tools into Python using SWIG or Boost.Python. 

Although this approach serves the purpose, it is not 
compatible with Python’s dynamic programming style.  In 
particular, extra-steps outside of Python are required to 
generate the topic-specifc python mapping.  Furthermore, 
when topic structures change, these wrappers have to be 
regenerated and repackaged in order for the actual Python 
application to use them.  All these limitations interrupt the 
natural workflow of programmers and are not compatible 
the the dynamic language nature of Python. 

In order to address these limitations, we are developing 
a new Python DDS (pyDDS) implementation.  As shown 
in Fig. 4, we have moved the generation of topic-specific 
codes into Python.  These topic-specific codes in-turn 
interace with generic DDS services.  Using this approach, 
applications can source in topic structure definitions at 

run time and generate the topic-specific readers and 
writers on the fly as pure Python classes.  By eliminating 
the need to generate and load topic-specific wrappings in 
separate steps, the new pyDDS library is more compatible 
with dynamic programming nature of Python and also 
more easily accepted by Python developers.   

The following listings demonstrate how to interact with 
a DDS data topic from within Python: 

 
# First thing to do to use pydds  
import pydds;  

To Join a Data Domain: 
   
# Uers defines the dataspace runtime  
# and pass it in to various other 
# operations that need it.   
 myDataspace =  
   pydds.connect_dataspace 
    (“Domain name”, “Partition name”) 
  
To Manipulate QoS Policies: 
 
myQoS = pydds.create_qos() 
myQoS.set_reliable (3000000) 
myQoS.set_transient() 
myQoS.set_keep_last (3) 
 
To Create Topic Reders/Writers: 
 

Figure 3: A straightforward Python DDS wraps generated
topic-specific codes. 

Figure 4: The new pyDDS implementation takes 
advantage of Python's dynamic language features. 
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# Creating/Finding a topic in global 
# data space. Last argument specifies  
# the URI to the topic definitions 
helloTopic = pydds.createTopic 
 (“TopicName”, 
  myDataspace, 
  myQoS, 
  file:///HelloWorld.idl#HelloTopic) 
 
# Now create reader/writer objects 
helloReader = 
 helloTopic.create_reader(readerQoS) 
helloWriter =  
 helloTopic.create_writer(writerQoS) 
 
To Write and Read Data Samples: 
 
# Creating a sample 
helloSample = 
 helloTopic.create_sample 
  (message = “John Smith”,  
   repeat = 3) 
 
# Publishing the sample 
status =  
 helloWriter.write (helloSample) 
 
# Simple read/take  
[samples, infos] = helloReader.read() 
sys.stdout write(samples[0].message) 
 
We plan to model listener-based callback data read 

interface after the Twist or Trellis libraries. Furthermore, 
we would also like to take advantage of the emerging 
eXtensible Type Standard which is being ratified by the 
OMG [7,8]. 

CONCLUDING REMARKS 
This paper describes how a dual-service-bus SOA 

provides an ideal development environment that promotes 
modulization of high-level application components and 
facilitates dynamic composition of high-level 
applications. In the context of the high-level application 
environment, it means flexibility in selecting and 
connecting the most appropriate modeling algorithms and 
programs. To support such use case, we are bringing the 
next generation data-centric publish-subscribe 
middleware called DDS to this environment by 
investigating various usage scenarios and programming 
patterns of DDS in ACS. Furthermore, we are developing 
tools and libraries to enable ACS developers to leverage 

the new technologies. We developed a DDS performance 
test suite and used it to benchmark and evaluate various 
open source and commercial DDS implementations. We 
also implemented a set of example Web-based high-level 
application on top of open source DDS implementations. 

Other than demonstrating how a ACS can utilizes DDS 
middleware technologies, we are also developing tools to 
help facilitate the adoption of DDS. We implemented a 
set of prototype plug-ins for Control System Studio to 
monitor and emit DDS data stream. We also developed a 
prototype Python mapping for DDS to enable Python 
applications to participating in DDS data exchange. We 
are in the process of hardening these prototypes and 
enhance their robustness and usability. 
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