
FABRIC MANAGEMENT WITH DISKLESS SERVERS
AND QUATTOR IN LHCb

P. Schweitzer*, E. Bonaccorsi, L. Brarda, N. Neufeld, CERN, Geneva, Switzerland.

Abstract

 At CERN LHCb experiment (Large Hadron Collider
beauty), in order to reconstitute and filter events, a huge
computing facility is required (currently ~1500 nodes).
This computing farm, running SLC (Scientific Linux
CERN) [1], a Red Hat Enterprise Linux (RHEL) [2]
derivate, is net booted and managed using Quattor [3] to
allow easy maintenance. LHCb is also using around 500
diskless Credit Card PCs (CCPCs) embedded in the front
end electronic cards. To go farther than the limited Red
Hat provided (and now deprecated) netboot tools, a new
solution has been designed and will be shortly presented
in this paper.

LINUX DISKLESS
All these computing nodes get their operating system

(Linux) from some dedicated servers (each server is
controlling a slice of the farm).

Boot Process
The node's boot ROM sends a DHCP query. Its server

replies with the IP address to use and the location of the
pxelinux.0 stage 2 loader file. The node gets this file by
TFTP and starts it. The stage 2 boot loader then loads the
Linux kernel and initial ramdisk and gives the control to
the initialisation script located in the ramdisk.

This script has to setup the networking, mount the root
file system from the server and switch to this NFS root. It
then passes the control to the usual Linux initialisation
scripts.

For many reasons, the running Linux needs to write
files in many locations. We will now see the Red Hat way
of making these files writeable and the problems and
limitations of this method. Then we will talk about what
was developed to circumvent these problems and
limitations.

Diskless: Red Hat y
Up to RHEL5, Red Hat had a package named system-

config-netboot to setup diskless servers. It was a set of
python and bash scripts that were setting up the dhcpd
and tftpd servers, customising the shared root file system
and making the initial ramdisk for the diskless nodes.

To make some files of the root file system writeable for
the nodes, with possibly different contents, the
initialisation script from this package was making the
following actions after having mounted the root file
system:

Mount the 'snapshot' directory from the server, in
read/write mode. This directory contains one sub-
directory per node and two files with the list of the
files that need to be writable.
Remount (using the bind mount option) each of these

files from the node's snapshot to the root file system.

There are two problems with this method:
Only files or folders of the fixed list can be writeable.

To add a file to that list, we have to reboot the nodes
after the file list modification.
The mount table is 'polluted' by all these remounts.

Diskless: w LHCb Way
To add flexibility to the diskless nodes handling, we

had the idea of using file system union, which is usually
used on Linux live media (CDs, DVDs or USB keys). As
LHCb is using Scientific Linux CERN 5 in production
and SLC 6 has been released and will go in production,
the new system had to support both.

FILE SYSTEMS UNION
The principle of the file system union is to join several

file systems, at least one read-only (generally) and one
read-write and use that union as a normal Linux file
system. The behaviour is the following:

When creating a file, the file is directly created on the
read-write file system.
When writing a file, if the file only exists only on the

read-only file system: the modified file (called copyup)
is written on the read-write file system with the same
name and hides the read-only version.
When erasing a file, if the file only exists on the read-

only file system: a whiteout file (filename prefixed by
'.wh.') is written on the read-write file system to hide
the file.

WaW

Ne

Proceedings of ICALEPCS2011, Grenoble, France WEMMU005

Infrastructure management and diagnostics 691 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Table 1: Union File Systems Evaluation

Feature

mode Copy on write NFS branches Kernel specific rebuild Metadata
separation

Im
pl

em
en

ta
tio

n

UnionFS [4] kernel Yes Yes Yes No

Aufs [5] kernel Yes No Yes No

Funionfs [6] FUSE [8] Should be Yes No No

Unionfs-fuse [7] FUSE Yes Yes No No

Renaming a file is done by copying the old file under
the new name on the read-write file system and hiding
the old file with a whiteout file.

Several implementations of file system fusion were
evaluated. Table 1 shows the result of this evaluation.

We first tried to make the union on the nodes during
diskless initialisation but finally choose to do it on the
server, and NFS exports the “unioned” file system. Client
side union was just using too much memory on the
CCPCs.

An Union File System Designed for Diskless
While evaluating union file systems implementations, it

became clear that none was perfect for net booted nodes.
All were designed with totally different goals than ours.

One of the big problems was that too many copyups
were made on the read-write file system.

So we decided to implement an union file system
designed for diskless systems, with the following
functionalities:

union between only one read-only and one read-write
file systems
if only the file metadata are modified, then do not

copy the whole file on the read-write files system but
only the metadata (stored with a file named as the file
itself prefixed by '.me.')
check when files on the read-write file system can be

removed
As a proof of concept, a first version of this new union

file system, named PierreFS (until we find a better name)
as been developed and successfully tested: the read-write
file system was only containing configuration files
configured by our Quattor configuration system and
runtime files in /var. Even library pre-linking, which was
making a lot of copyups in other implementations did
none in PierreFS.

The next step will be the implementation of this file
system directly as a module for the kernel, without the use
of FUSE. This is a huge work that will make it more
efficient using less memory. Of course, it will have to be
compatible for both SLC5 and SLC6 kernels.

QUATTOR COMPONENT
The LHCb experiment is using the Quattor toolkit to

manage the configuration of all its Linux servers and
nodes.

In the previous Quattor component in charge of the
diskless configuration, supporting the Red Hat way, many
things were done by the Red Hat system-config-netboot
package. Some of the scripts in this package were buggy,
with no output in case of problems. Red Hat totally
removed that package in RHEL6, the distribution SLC6 is
based on.

As the Quattor component itself was not really
maintainable, it was decided to completely rewrite it to
make it more efficient and modern, and handle
completely the new diskless model, of course without
using the system-config-netboot scripts.

System-config-netboot Replacement
In this package, several scripts were used by the

Quattor component:
pxeos & updateDiskless were in charge of copying the

kernel and building the diskless specific initial ramdisk
(initrd.img): in the new component, updateDiskless
repackaged, is still used for SLC5 while rracut is used
for SLC6. CCPCs are a special case as they do not
support pxe: the wraplinux utility is used to create the
nbi file containing the kernel and the ramdisk together.
pxeboot was in charge of making the pxe

configuration files for the nodes. The functionality is
now in the Quattor component.
mkdiskless was used to customise the shared root file

system for diskless use. The functionality is now in the
Quattor component, with a possible call to an external
script.

Other Improvements
Rewriting the component gave us the possibility to

greatly improve it and simplify the setup of diskless
servers.

In the previous setup, the root file system shared by all
nodes was created by copying the server root file system

WEMMU005 Proceedings of ICALEPCS2011, Grenoble, France

692C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Infrastructure management and diagnostics

at the end of its installation. It was not possible to have
clients with a different architecture or a different version
of the Linux distribution. We added the functionality to
create the shared root file system for any Linux
distribution and architecture, by using the ’--installroot’
parameter of the yum command. The only thing we have
to do is to provide the component a yum configuration
file. We can even have one server with many shared root
file systems, each with different versions of the
distribution and/or different settings. Like this, we can
have a node running SLC5, just change some settings on
the server, and then have a restart under SLC6.

The dhcpd configuration part now has better support for
subnets and the generated files follows more closely the
standard, using dhcpd groups to avoid repeating the same
options for all hosts.

The diskless component also keeps track of the created
and administrated nodes. That way, in case of deletion of
a node in the configuration, it can properly remove it,
without leaving leftovers. It also handles configuration
changes on the nodes (MAC address change, IP address
change).

Changes to Another Component
To configure the shared root file systems, the Quattor

component runs the Quattor utilities “chrooted” in these
root file systems. To ensure proper run of Quattor inside
of Quattor, the proc pseudo file system is mounted just
before the change root and the Quattor run. This allows
locks consistency, but also enables
mounting/dismounting. That is why the Quattor NFS
component has been fixed to add an option that makes
this component only write configuration and not attempt
any mount or dismount.

CCPC Support
This new diskless component also comes with a great

improvement since it adds CCPCs management into
Quattor. Some more tweaks are done on the CCPCs
shared root file system and snapshots, as disabling
Quattor on them (that would have taken too many
resources).

SIDE EFFECTS
On a side note, the use of a FUSE file system as root

file system has exposed a bug in the Linux kernel (that
appears to be well-known). A workaround has been
deployed in the ramdisk init script.

Also, the use of this file system helped revealing
security vulnerability in the Linux kernel. Effects of that
security vulnerability are really limited and only allow
someone who does not have access on a directory to read
its contents. Since it is hard to reproduce it out of the box,
it has not been reported yet (no easy test-case).

CONCLUSIONS
The concept of using file system union to make diskless

systems easier to manage has been successfully tested. We
even have new use cases where the way of doing diskless
nodes system does not work (eg: Dell management tools,
which want to write some inventory files in many places).

The new Quattor diskless component, together with
PierreFS will go in production during the next winter
shutdown. It will allow us to better manage the Credit
Card PCs, which are not supported by the current system.
It will also ease the management of the LHCb event
filtering farm. With the support of several Linux
distributions on the same server, we will be able to easily
test SLC6 on the farm nodes, with the ability to go back
to SLC5 with a simple reboot of the nodes.

The new file system has been published on
SourceForge [9] and the work to integrate it to the kernel
will start in October 2011.

REFERENCES
[1] http://cern.ch/linux
[2] http://www.redhat.com/rhel/
[3] http://www.quattor.org
[4] http://www.fsl.cs.sunysb.edu/project-unionfs.html
[5] http://aufs.sourceforge.net/
[6] http://funionfs.apiou.org/
[7] http://podgorny.cz/moin/UnionFsFuse
[8] http://fuse.sourceforge.net/
[9] http://sourceforge.net/projects/pierrefs/

Proceedings of ICALEPCS2011, Grenoble, France WEMMU005

Infrastructure management and diagnostics 693 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

