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Abstract

A hardware implementation of an adaptive phase and
magnitude detector and filter of a beam-phase control sys-
tem in a heavy ion synchrotron application is presented in
this paper. The main components of the hardware are adap-
tive LMS filters and phase and magnitude detectors. The
phase detectors are implemented by using a CORDIC algo-
rithm based on 32-bit binary floating-point arithmetic data
formats. The floating-point-based hardware is designed to
improve the precision of the past hardware implementa-
tion that were based on fixed-point arithmetics. The hard-
ware of the detector and the adaptive LMS filter have been
implemented on a programmable logic device (FPGA) for
hardware acceleration purpose. The ideal Matlab/Simulink
model of the hardware and the VHDL model of the adap-
tive LMS filter and the phase and magnitude detector are
compared. The comparison result shows that the output
signal of the floating-point based adaptive FIR filter as well
as the phase and magnitude detector agree with the ex-
pected output signal of the ideal Matlab/Simulink model.

INTRODUCTION

In a synchrotron, different modes of coherent longitudi-
nal beam oscillations may occur due to an initial mismatch
or to non-linearities such as wake fields. These oscilla-
tions are characterized by their mode number m and n [4]
and take place at the characteristic synchrotron frequency,
which depends on the system state (more precisely, on the
magnetic flux derivative, accelerating voltage, and particle
energy). In order to eliminate undesired dipole oscillations,
a beam phase control system [5] has been devised, which
was initially designed to deal with in-phase dipole oscil-
lations (m = 1, n = 0) only [5]. The addition of ampli-
tude detectors is intended to make it suitable for damping
higher-order modes [4, 6].

This paper presents a new floating-point based architec-
ture designed to improve both the precision and processing
speed of the digital controller over previous implementa-
tions [2, 11]. The floating-point arithmetic units are used
to overcome issues with explosive divergence and stalling
effects caused by fixed-point implementations [8]. Such
problems may arise due to input or output signal satura-
tion caused by changes in the dynamic signal range at run-
time. Using a floating-point representation eliminates the
need for input and output scaling that would have to be
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performed in a fixed-point implementation to accomodate
these changes. A floating-point implementation can also be
adapted to different dynamic range requirements of other
control applications and is therefore more suitable for an
integrated circuit implementation (ASIC).

In the following section, the digital signal processing
chain of the beam phase control is presented. Its core com-
ponents are phase and magnitude detectors and adaptive fil-
ter blocks, which are discussed in the subsequent sections.
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Figure 1: Block Diagram of the Beam Phase Signal Pro-
cessing.

The signal processing pipeline implemented in the DSP
system is shown in Fig. 1. It performs the following steps:

1. Some analog preprocessing is performed on both the
gap voltage and the beam position signal [3]. Note
that the beam position signal is quite noisy and has a
high level of uncertainty since the bunch may have an
arbitrary shape.

2. Four successive samples are used to form the in-phase
and quadrature components of both signals.

3. The phase of both signals is computed using Alg. 3.

4. The phase difference is fed into a programmable FIR
filter in order to eliminate noise and other disturbances
in the phase difference. The filter is tuned to a fre-
quency slightly above [5] the synchrotron frequency
and has to be re-tuned continuously since this fre-
quency changes.

5. The output of the filter is fed into a variable-gain con-
troller whose gain also depends on the characteristic
frequency. This controller yields a frequency correc-
tion which is then applied to the cavity in order to in-
tentionally mistune it, thereby pulling the bunch back
to its desired position.

BPM is the signal from the beam position monitor. ugap

is the voltage across the gap of the reference cavity. fref is
the reference frequency (see [3]). Future extensions [6] are
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dashed. In order to enable real-time processing, the phase
detector and filtering blocks have been implemented on an
FPGA.

PHASE-MAGNITUDE COMPUTATION

Architecture for Phase-Magnitude Computing

The phase and magnitude of the beam signal are de-
tected by using a CORDIC (COordinate Rotation DIgi-
tal Computer) algorithm. The drawback of a conventional
CORDIC algorithm is its high computation latency [7]. To
accelerate the computation, an increment of rotation angle
on each iteration becomes one solution. A double-rotation
CORDIC algorithm is proposed as depicted in Alg. 1. In
the double-rotation CORDIC algorithm, the rotation angle
is extended two times (2φ) of the conventional CORDIC.

Algorithm 1 MICRO-DRCORDIC-VM
Input: : Xi , Yi , Zi , T , δi
Output: : X , Y , Z, δi+1

X = Xi − 2−2·i−2 · Xi − δi · 2−i · Yi

Y = Yi − 2−2·i−2 · Yi + δi · 2−i · Xi
Z = Zi − δi · 2 · T

The double-rotation CORDIC algorithm using the re-
dundant method was proposed by Takagi et al. [13]. With
the redundant method, the rotation direction of the double-
rotation CORDIC algorithm is δi ∈ {−1, 0, 1}. However,
using the redundant method, the scaling factor is not con-
stant and has to be calculated at run-time. To overcome
this problem, we propose the double-rotation CORDIC al-
gorithm as presented in Alg. 2 using the non-redundant
method and with a constant scaling factor. Thereby, the on-
line computation problem [1], as well as the scaling prob-
lem are also eliminated.

⎡
⎢⎣

XN

YN

ZN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

Kdr

√
X2

0 + Y 2
0

0

arctan
Y0

X0

⎤
⎥⎥⎥⎦ (1)

Algorithm 2 DRCORDIC-VM
Input: : Xin , Yin , N , LTAN , K−1

dr
Output: : Xout , Zout

X0=Xin, Y0=Yin , Zin=0, δ0=1 {Initialization}
if Y0 ≥ 0 then

δ0=1;
else

δ0=-1;
end if
for i = 1toN do

[X , Y , Z]=MICRO-DRCORDIC-VM(Xo, Yo , Zo , TLUT (i), δi)
if Y ≥ 0 then

δi+1=1;
else

δi+1=-1;
end if
X0 = X
Y0 = Y
Z0 = Z

end for
Xout = X · K−1

dr
; Zout=Z

The constant scaling factor for the double-rotation
CORDIC is given by Kdr =

∏N
i=1(1 + 2−2i−2) which

approximately equals 1.084727 (K−1
dr = 0.9219),

and the maximum and minimum rotation angle∑N
i=1 2tan

−1(2−i−1) is in the range of [-0.9885,+0.9885].
Alg. 3 shows the computation of the beam phase and

magnitude based on online measurements of the gain volt-
ages GVi and beam position BPi signals [2], which is
illustrated in Fig. 1. The beam phase difference signal
(ΔPhase) is obtained from the difference between the
phase detection signals PA and PB of the gap voltages GVi

and beam positions BPi signals, respectively.

Algorithm 3 BEAM Phase and Magnitude
Input: : GV1,GV2,GV3,GV4,BP1,BP2,BP3,BP4

Output: : M , ΔΦ
Q1A = GV1; I1A = GV2; Q2A = GV3; I2A = GV4

Q1B = BP1; I1B = BP2; Q2B = BP3; I2B = BP4

ΔXA = Q1A − Q2A

ΔYA = I1A − I2A
[MA , PA]=DRCORDIC-VM(ΔXA, ΔYA, N , TLUT ,K−1

dr
)

ΔXB = Q1B − Q2B

ΔYB = I1B − I2B
[MB , PB ]=DRCORDIC-VM(ΔXB , ΔYB , N , TLUT ,K−1

dr
)

M = MB

ΔΦ=PA − PB

The architecture of the 3-stage double-rotation CORDIC
algorithm for the beam phase-magnitude detection is illus-
trated in Fig. 2. The 3-stage pipeline architecture is de-
signed to improve the performance of the beam-phase de-
tector.
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Figure 2: The micro-rotation architecture of the 3-stage
double-rotation CORDIC algorithm, where M1 = −i,
M2 = −2i− 2 and d = δi.
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Figure 3: MAPE comparison of the conventional CORDIC
and the double-rotation CORDIC.

Figure 3 depicts the performance comparison between
the conventional and the double-rotation CORDIC algo-
rithm by using the MAPE metric. MAPE stands for
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Mean Absolute Percentage Error and is a statistical mea-
surement of the CORIDC output accuracy formulated by
1
n

∑n
s=1| cs−ms

cs
|, where n is the number of measurements,

cs is the CORDIC output and ms is the ideal output.
The figure shows that the double-rotation technique gives
better accuracy with the same number of iterations. In
other words, for the same MAPE value, the double-rotation
CORDIC requires less interations.

Simulation and Synthesis Results

The simulation result of the double-rotation CORDIC al-
gorithm for the beam phase signal detection is depicted in
Fig. 4. The figure presents the beam input signal, the ref-
erence signal and the the output of the phase detector. The
output of the beam phase detector (beam phase signal) is
interfered with noisy signal. Therefore, the noise signal
should be filtered to acquire the noise-free beam phase sig-
nal. The filtering issue is described in the next section.

Figure 4: Beam input, reference and beam phase signals.

Table 1 shows the synthesis results of the micro-rotation
of the double rotation CORDIC algorithm onto a Xilinx
FPGA vlx110t-2ff1738 for different implementations (in
terms of the number of pipeline stages). Logic area com-
parisons between the conventional (CV) and the double-
rotaion (DR) CORDIC architectures are presented in the
table.

Table 1: Synthesis Results on Xilinx FPGA vlx110t

CORDIC
Utilization Min. Delay Max. Freq.

SReg SLUT LUT-FF (ns) (MHz)
1-state CV 252 0 0 4.68 213.668
2-state CV 258 343 231 3.05 327.836
3-state CV 273 355 239 2.94 340.513
1-state DR 663 0 0 7.713 129.653
2-state DR 258 698 230 5.045 198.210
3-state DR 746 1228 405 4.107 243.496

SReg=Slice Register, SLUT=Slice LUT

PHASE DIFFERENCE SIGNAL
FILTERING

Filter Architecture

The noise in the phase difference of the beam signal
shown in Alg. 3 is filtered by using adaptive FIR filter in
which the filter parameters are adaptively tuned by using a
least-mean-square (LMS) algorithm. The hardware archi-
tecture of the adaptive FIR filter is designed by using the
combination of serial and parallel structures. This combi-
nation is made to fulfill the time constraint of the applica-
tion and the area constraint of the FPGA device. Figure 5
presents the serial-parallel architecture of the adaptive FIR
filter with 64 taps. Two registers are controlled by a control
unit and are used to store the sampled input signal x(k− j)
and the filter parameters wj . The filter output computation
is implemented in serial, while the filter parameter adapta-
tion algorithm is implemented in parallel.

Floating-point adder, multiplier and multiplier-
accumulator units were used in the filter architecture.
The operands are IEEE single-precision binary floating-
point numbers [12], i. e. they have 1 sign bit, 8 exponent
bits and 23 mantissa bits. The floating-point adder
architecture consists of three stages: exponent differ-
ence and alignment, adding/subtracting combined with
leading-on-detection and normalization stage.

The floating-point multiplier architecture also consists of
three stages: exponent adding and mantissa multiplication,
mantissa shifting and normalization stages. In the normal-
ization stages, the arithmetic computing results are normal-
ized into the standard 32-bit (single precision) binary float-
ing point format. The normalization stages include also the
zero and infinity detections of the data values according to
the IEEE standard [12]. This approach is the same as the
one used in other projects documented in available litera-
ture [8].
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Figure 5: Adaptive FIR Filter architecture with 64 taps.

Simulation and Synthesis Results

Figure 6 shows the input-output signals of the adaptive
filter, the desired output signal and the error signal between
the filter output and the desired output signals. The main
challenge of the adaptive FIR filter hardware in practice
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Figure 6: Filter input-output signals.

Table 2: Synthesis Result on FPGA Virtex 5 Device

Utilization % of Total

Number of slice registers 38,549 31%

Number of slice LUTs 75,485 61%

Minimum Delay 7.462 ns

Maximum Frequency 134.018MHz)

is the generation of the expected filter output. At present,
the expected signal is calculated off-line. In the simula-
tion results shown above, the signal was captured from a
system model [9, 10]. We are working on a hardware im-
plementation of a simplified system model that can serve
as a reference in the future.

The adaptive FIR filter with LMS algorithm has been
implemented on the Virtex5 FPGA device (device type
5vfx200tff1738-2). The device has a total number of 200k
logic gates. The synthesis result is shown in Table 2.

CONCLUSIONS AND OUTLOOKS
The beam phase-magnitude hardware detector based

on the double-rotation CORDIC algorithm has been pre-
sented. Compared to the conventional CORDIC algorithm,
the double-rotation CORDIC algorithm provides better ac-
curacy. The adaptive FIR filter architecture that combine
serial and parallel computation modes is also presented.
The adaptive LMS algorithm is driven by the error signal
between the filter output and the desired signal. For now,
the desired signal is calculated off-line. In the future, we
plan to include a simplified system model in order to sup-

ply the adaptive FIR filter with an expected signal that is
not known a priori.
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