
COMETE: A MULTI DATA SOURCE ORIENTED GRAPHICAL
FRAMEWORK

G. Viguier, K. Saintin, Y. Huriez, M. Ounsy
SOLEIL Synchrotron, Gif-sur-Yvette, France.

R. Girardot, EXTIA, Sèvres, France

Abstract
Modern beamlines at SOLEIL need to browse a large

amount of scientific data through multiple sources that
can be scientific measurement data files, databases or
TANGO control systems.

We created the COMETE[1] framework because we
thought it was necessary for the end users to use the same
collection of widgets for all the different data sources to
be accessed. Conversely, for GUI application developers,
the complexity of data source handling had to be hidden.
As these two requirements are now fulfilled, our
development team is able to build high quality, modular
and reusable scientific oriented GUI software with
consistent look and feel for end users.

CONTEXT
The SOLEIL ICA team is in charge of the control

system and data reduction software on the beamlines. In
the early years of development at SOLEIL, ICA has
focused on the control system; today, however, the
NeXus storage system is fully integrated into the control
system through a set of dedicated devices. It is therefore
possible to record any data coming from Tango devices
into a NeXus file; SOLEIL beamlines produce daily
experimental data files with sizes ranging from a few MB
up to 100 GB. This is why there is a huge demand for
data reduction applications.

The ATK[2] toolkit helped us to quickly develop
applications dedicated to the control system and its
supervision. The problem is that ATK is intimately linked
to TANGO.

Data reduction software on the other hand is based on the
experimental data NeXus file format and doesn’t have a
dedicated graphical toolkit. It is in this context that
SOLEIL launched the COMETE project to propose a
multi data source toolkit to help engineers to develop
applications independently of the data source.

THE COMETE SOLUTION

Architecture
COMETE is a framework composed of three parts (Fig.1):

1. A set of graphical components (widgets) that are
completely dissociated from a data source or even a
data type.

2. A data source compatible with the graphical
component, each corresponding to a data type.

3. Between the widgets and the data source, a
communication layer called DataConnection
Management.

Each component of this architecture will be described in
the following sections.

Figure 1: Comete Project Architecture.

Widgets
Comete Widgets are available in three implementations
(Swing, SWT & AWT) and therefore integrate well into
any existing JAVA software (Fig. 2). Anyone can use this
set of widgets because they are based on the three major
toolkits. In fact, a Comete Widget is a standard
component with some code that makes it connectable to
any COMETE data source.
COMETE components are dedicated to scientific data but
anyone can easily add new widgets or use the existing
components in another context.

Figure 2: Comete Widget implementations.

The current widget can display:
- scalar data (textfield, spinner, wheelswitch, slider,

etc.)
- spectrum data (chart viewer)
- images

DataSources

DataConnection Management

Widgets

Comete Widgets

Comete
AWT

Comete
SWT

Comete
SWING

WEMAU012 Proceedings of ICALEPCS2011, Grenoble, France

680C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Our image viewer is based on ImageJ [3] which is a
popular image processing application. ImageJ is already
used by many scientists, so it is very easy for them to use
our viewer and they can run their old macros through our
Java applications. Since our viewer encapsulates ImageJ,
it has the same amount of image processing features as
illustrated in Fig. 3.

Figure 3: Comete Image Viewer features.

DataConnection Management
The DataConnectionManagement module is a layer that

allows connection between two entities, called “target”
and “data container”.

This system implements a Mediator pattern, as well as
various other patterns such as Strategy, Observer etc.
Mediator was chosen instead of MVC pattern because our
two entities had to be completely independent from each
other and from the system evolution.

The focus for this project is to provide COMETE with a
solution to connect a widget with a data source, like
Tango or NeXus, in a generic way. That means this
system is an abstraction of these entities, and provides
useful tools to make them communicate without knowing
their type.

For example, thanks to the Comete architecture, anyone
can superimpose a spectrum coming from a NeXus file
with the same spectrum from the control system (see
Figure 4).

Figure 4: A widget connected to two sources.

DataSources
When someone wants to add a new data source to

Comete, the only thing to do is to implement a class
called AbstractCometeDataSource. This will make sure
that the COMETE controller will be able to send data to
the widget and vice-versa.

We made a TANGO implementation for control system
software and we are working on a NeXus implementation
for data reduction software. We plan to implement a data
source for databases because we have an archiving
system[4] built on ORACLE systems. Finally, we will
have a data source for our sequencer software
(Passerelle[5]) and thus enable our users to modify their
sequences through our Java software.

CometeBox
The CometeBox module aims to simplify the use of

COMETE. The fact that COMETE is a group of six
different modules and the complexity of the architecture,
especially the widget / source connection, makes it in fact
difficult to use.

CometeBox operates on two levels. The first is for
connection management: ordinarily, we need about ten to
fifteen lines of code to make connections properly
between entities, calling numerous functions coming from
interconnected projects. With CometeBox, this is reduced
to one line: one call to the correct function (Fig. 5).

The second goal of CometeBox is to centralize data
handling: the connection process needs a wide range of
data, some of them holding the same information. With
CometeBox, this data is gathered and only information
that is really necessary is stored.

Data Source

Data
Connection

Management

Widgets Chart

Controller

Tango NeXus

Proceedings of ICALEPCS2011, Grenoble, France WEMAU012

Software technology evolution 681 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 5: Connect a widget to a data source in 3 lines.

Performance
Five years ago, SOLEIL scientists were working with

spectrum detectors or small image cameras. Performance
was not a big deal because the data flow was not really
impressive. Today this is not true, scientists are buying
fast acquisition detectors with big CCDs and they store
each frame into NeXus files.

COMETE needs to have a fast and efficient mechanism
to transfer data from the source toward the widget. The
first version of COMETE was really slow because it was
only based on Java objects (for example: each integer
transferred was converted into an Integer Java object).
We thought that this would make COMETE a modern
Framework but the memory footprint of every COMETE
data reduction program was too expensive. Then we
changed our philosophy from ‘all object’ to ‘no object’.
That means that today, each data item is transferred
through COMETE as a primitive type. Today we are able
to load stacks of images from our high data throughput
multi detectors experiments [6] in a reasonable time.

Figure 6: Data reduction software dedicated to
microscopy.

EXAMPLES

Fig. 6 and Fig. 7 are two examples of graphical

applications based on COMETE and using the same
component list with different data sources.

Figure 7: MXCube clone on PX2 beamline.

CONCLUSION
Today COMETE is a great tool for SOLEIL’s developers.

NeXus novices are able to build smart and effective data
reduction software; anyone can develop a new
supervision application without the help of TANGO
gurus. In the future, we plan to optimize COMETE by
implementing new refreshing systems. Data Reduction
developers are looking forward to another feature: a
mechanism of filters between the data source and the
widget. Multiple filters can then be stacked and applied in
a given order to an original Data Source to transform it to
the final Data Source that will be really viewed by the
COMETE widget.

REFERENCES
[1] G.Viguier, K.Saintin
 http://sourceforge.net/apps/trac/comete/
[2] F. Poncet, J.L. Pons, “Tango Application Toolkit”,

ICALEPS’05, Geneva, Oct 2005.
[3] ImageJ : Image processing and analysis in Java
 http://rsb.info.nih.gov/ij/
[4] J. Guyot, M. Ounsy, S. Pierre-Joseph Zephir “Status

of the TANGO Archiving System”, ICALEPS 2007
[5] A. Buteau, M. Ounsy, G. Abeille “A Graphical

Sequencer for SOLEIL Beamline Acquisitions”,
ICALEPS’07, Knoxville, Tennessee - USA, Oct
2007.

[6] “Distributed Fast Acquisitions System for Multi
Detector Experiments”, ICALEPCS 2011,
WEPKN003

•NexusKey key = new NexusKey();
•NexusKeyTool.registerAttribute(key,
"myfile", "dataset);

•chartBox.connectWidget(chartViewer, key);

NeXus

•TangoKey key = new TangoKey();
•TangoKeyTool.registerAttribute(key,
"mydevice", "attribute");

•chartBox.connectWidget(chartViewer, key);

Tango

WEMAU012 Proceedings of ICALEPCS2011, Grenoble, France

682C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

