
LIMA: A GENERIC LIBRARY FOR
HIGH THROUGHPUT IMAGE ACQUISITION

A. Homs , L. Claustre, A. Kirov, E. Papillon, S. Petitdemange, ESRF, Grenoble, France.#

Abstract
A significant number of 2D detectors are used in large

scale facilities' control systems for quantitative data
analysis. Common control parameters and features can be
identified in these devices, but most of manufacturers
provide specific software control interfaces. A generic
image acquisition library, called LIMA, has been
developed at the ESRF for a better compatibility and
easier integration of 2D detectors to existing control
systems. Its design is driven by three main goals: i)
control system independence; ii) a rich common set of
functionalities, providing alternative software solutions
when not implemented by hardware; and iii) intensive use
of multi-threaded algorithms synchronised by events for
ensuring performance of high throughput detectors. LIMA
currently supports a dozen of image detectors from
different manufacturers, half of them being integrated by
collaborating institutes and manufacturers. Although still
under development, LIMA features so far basic image
transformation, processing and reduction, fast data saving
on different file formats, among other features. Its
modular design allows not only the extension of generic
hardware and software functional blocks, but also the
integration of user-defined post-processing algorithms.

INTRODUCTION
The standard beamline (BL) control software at the

ESRF is basically built on top of SPEC, a versatile
hardware control application, and a variety of distributed
device servers accessed through the TACO and TANGO
middlewares. A considerable number of 2D detectors
have been interfaced in the past using common generic
CCD TACO and TANGO device server interfaces,
notably simplifying the client SPEC code. However, the
real code implementing the configuration and control of
the image acquisition process was copied and/or rewritten
on each new detector. Moreover, new features had to be
manually added on existing detectors, which resulted
unpractical in many cases.

In order to go a step further in the standardisation of the
control of these devices, we have developed a generic
Library for IMage Acquisition (LIMA) [1]. It provides the
common functionality expected from 2D detectors,
exploiting the hardware capabilities to their maximum
extent, and complementing by software the rest features
not provided by the detector.

BUILDING BLOCKS
A key design goal was to not degrade the performance

of high throughput detectors. This implied the use of
parallelisable multi-threaded algorithms for an optimum

usage of multi-CPU/cores in modern PCs, and their
corresponding event-based synchronisation. The result
was the development of ProcessLib, an auxiliary multi-
threaded image processing framework. It manages the
execution of arbitrary sequences of tasks, combined in
chained and/or parallel configurations. Once added to the
run queue, a task is executed as soon as a working thread
is available, normally when a CPU/core is idle. The
asynchronous notification of the task end is implemented
through callbacks.

Another basic element developed for LIMA is a
message logging framework for code tracing and
debugging. It can be dynamically configured to
enable/disable individual functional blocks, and, in an
independent way, to change the log verbosity. The output
trace is indented following the function call stack, which
is different for each active thread. Special efforts were
made to reduce code execution slowdown when no trace
is active, while keeping this dynamic, thread-safe
behaviour.

The core of the library has been written in C++ and
Python wrapping through SIP has been implemented for
most of the classes.

LIBRARY STRUCTURE
The general LIMA layout is shown in Fig. 1.

Figure 1: General LIMA layout.

Detector-
Specific
Config.

 Hardware Interface

 DetInfo Sync. Buffer

 RoI Bin Video

Optional

LIMA

Detector
SDK

Application

 Control Layer

 Display Saving Process

 Image:
• Rot
• Flip
• Bin
• RoI

 Acq.
Mode:
• Accum
• Stripe

Concat

 Buffer

 Video

__
#alejandro.homs@esrf.fr

WEMAU011 Proceedings of ICALEPCS2011, Grenoble, France

676C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

The library structure divided into two main layers:
control, containing the common control and processing
code, and hardware, implementing the detector-specific
part. The control layer provides the library interface to the
high level application. User requests to configure and
control the acquisition are gathered by the control layer,
so the hardware layer functionality is limited to the
generation the image frames in a best-effort basis. The
control layer is responsible of: i) adapting the received
image geometry if it does not match the user requests, and
ii) execute the frame processing chain.

Hardware Layer
The detector-specific code, called “hardware plug-in”

must implement a well-defined “hardware interface”. It
provides basic acquisition start/stop/status control as well
as entry points to functional blocks, corresponding to the
hardware capabilities. Only three control blocks are
mandatory:

• Detector information: name, model, dimensions.
• Synchronisation: internal/external trigger, exposure

time and sequencing.
• Image buffer management, for which helper

classes are provided with a default behaviour.
All the other capabilities are optional. They include:

• Pixel binning (scaling).
• Sub-image / region-of-interest (RoI).
• Image horizontal / vertical flip.
• Shutter control.
• Video cameras: standard mono/color image formats

and gain settings.
This modular design simplifies the integration of new

hardware functionality without recoding existing
hardware plug-ins.

One important requirement imposed on the hardware
plug-in is its responsibility of generating events on every
acquired frame. In case the detector API does not provide
this feature and relies on blocking/polling interfaces,
auxiliary thread management helper classes are provided
to simplify the implementation of frame ready callbacks.

As a general rule, the hardware layer is queried to
check if it can completely or partially satisfy a particular
user request. For instance, when the user asks for a pixel
binning combination that is not implemented, the
hardware layer replies with the highest binning it can
provide. The same best-effort approach should be
followed with RoIs, where some hardware alignment
constrains might require returning a region bigger than
the requested one. The user can always select if a feature
is to be implemented entirely by hardware, by software or
by a combination of both.

It is worth to remark that to add support for a new
detector its only required to implement:

1. The detector information control block
2. The synchronisation control block
3. Acquisition start/stop/status control and frame-

ready callbacks

This can be coded either in C++ or Python. Such a
minimal implementation will already provide the user
with a fully operational system exporting all the common
software features.

Control Layer
A modular approach is also found in the control layer,

the core of LIMA and its most complex element. Different
functions are activated through individual blocks, all of
them coordinated by a global control class. The user
configures the acquisition using these different modules,
many of them implementing parameter caches to
minimise hardware access. Once all the settings have
been fixed, a “prepare acquisition” command
synchronises the hardware configuration, including the
(sometimes slow) memory buffer allocation. This
minimises the delay in the “start acquisition” command,
which can add undesirable latencies in the software
synchronisation with other devices like motors or LIMA
detectors.

The dynamics of the control layer starts with the
“hardware frame ready” callback. The first task to
accomplish is the software frame reconstruction, needed
if the detector pixel readout sequence does not correspond
to its real geometry [2]. Even if this is a detector-specific
functionality, it is performed in the control layer to exploit
the ProcessLib capability of parallel processing different
frames on different CPU/cores.

Individual counters are updated as the frame progresses
in the processing chain: last-image-acquired (hardware),
last-base-image-ready (geometric reconstruction and
transformations), last-image-ready (basic processing),
last-image-saved (data storage), etc. The user can register
to an acquisition status callback that notifies each time
these image counters progress.

Detector-specific Configuration
The control layer provides a user interface to standard

acquisition parameters. However, virtually all detectors
implement specific settings, which can range from chip
timing and readout configurations to generic I/O signal
management and ADC gain/threshold levels. To avoid a
complex generic infrastructure for these controls, the
hardware plug-in is responsible to directly export them to
the user through a detector-specific control block. The
control layer is not aware of such parameters, so
mechanisms have been foreseen to notify important
changes that affect the acquisition. For instance, a “max
image size changed” callback must be implemented by
the hardware if the user can select among detector profiles
with different effective image sizes.

AVAILABLE FEATURES

Geometric Transformations
Four basic image transformations are implemented:

image rotation (90º, 180º, 270º), horizontal and/or vertical
flip, pixel binning (scaling) and RoI (sub-image). From
the user coordinates point of view, they are applied in that

Proceedings of ICALEPCS2011, Grenoble, France WEMAU011

Software technology evolution 677 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

order. This means that binning factors include the rotation
mode, and RoI coordinates are relative to binned pixels.
The simultaneous activation of these transformations
requires more complex calculations when some of them
are either totally or partially done by hardware. In
addition, the implementation of arbitrary pixel binning
combinations, including values that are not integer
divisors of the detector size, is under development.

Some scientific techniques exploit 2D detectors to
measure 1D spectra in image stripes. Pixel binning in one
dimension is normally used to improve signal to noise
ratio. Such configurations can lead to a very high frame
rate (above 1 KHz), interesting in time-resolved
experiments [3]. To keep performance under these
conditions, LIMA implements the stripe concatenation
mode, where a long sequence of many frames can be
read/saved at once as a single concatenated image without
additional memory copies. In case the original 2D images
are required for analysis (i.e., no binning applied), the
same stripe calculation can be obtained by the
independent RoI-to-spectrum software operation.

Basic Image Processing
Hardware detector constrains can limit the pixel

integration either in exposure time (Frelon) or in dose
(Maxipix [2]). A simple solution to this problem is
provided through the frame software accumulation. It is
activated by specifying a maximum frame exposure time;
the control layer programs the real number of hardware
frames depending of the requested total exposure. In
addition to the accumulated image, a saturation pixel
mask can also be obtained from the algorithm, important
to detect non-linear software artefacts.

Basic image processing algorithms like background
subtraction, flat-field correction and pixel masking are
already integrated. Standard calculations used for Beam-
Position-Monitoring (BPM) including intensity sum,
average, std. deviation, min/max and centroid position are
also available in a per-RoI basis. That is, the so-called
“RoI-counters” are calculated in parallel on multiple sub-
images for each frame. The history of the all the RoI-
counters is available during and/or after a sequence of
images (scan).

Data Saving
Data storage is a key element in high performance

image acquisitions. In addition to the detector images,
meta-data describing the acquisition environment,
including user-supplied meta-data, must be saved. The
meta-data concept is called “frame-header” in LIMA and
is implemented in the core of ProcessLib as key→value
maps. Three levels of meta-data are identified:

• Static: does not change during the life of the
process (detector-specific: model, serial number).

• Common: is shared by all the frames in an
acquisition sequence (user-defined sample name,
sequence start date/time).

• Frame: specific information when frame was taken
(high resolution time stamp, instantaneous internal
and/or external counters values).

There are three file saving modes currently
implemented in LIMA. They differ in the way to trigger
the saving of each frame: manual (user request), auto-
frame (frame is ready) and auto-header (both the frame
and its user-defined header are ready).

The following file formats are currently supported:
• EDF: ESRF Data Format
• Nexus/HDF5: part of the Common Data Model

(CDM), developed by SOLEIL and ANSTO
• CBF: Crystallographic Binary Files. It is optimised

in LIMA with parallel frame compression.
• Raw

The library also allows the parallel saving of multiple
file streams on different medias. This data replication
technique has proven to be efficient in high throughput
detectors when multiple endpoints (PC, file servers) must
receive the same data. Data endpoints examples include:
online data analysis workstation, central data storage
server (backup, long-term archiving) and local NAS with
BL user disks (to be brought to their home institute).

Online Visualisation
Online data visualization is required in must of the

cases as a direct feedback of the acquisition evolution.
Current LIMA display mechanisms export the image data
to a channel, to be read by a separate client application
that performs the real visualisation. One method publishes
the data on the standard ESRF SPEC Shared memory
(SPS). A second method exports the generic LIMA video
interface through the TANGO LIMA server. In each case,
a dedicated client Qub/Qt4-based application shows the
live image.

External Software Plug-ins
Finally, user-defined software plug-ins can be used to

execute arbitrary image-based operations. An entry point
in the control layer completely exports the ProcessLib
functionality, allowing an external code to be called on
every frame. Again, the external software operation can
be implemented C++ or Python.

PROJECT STATUS

Supported Detectors
The list of currently supported detectors is:

• Camera simulator: a pure software plug-in
• ESRF Espia-based Frelon camera and Maxipix

detectors (Single chip, 2x2 and 5x1 chip arrays)
• Dectris Pilatus and Mythen
• GigE Basler and Prosilica cameras
• ADSC and MarCCD detectors
• XPAD pixel detector
• Roper Scientific cameras through PVCAM
• PCO.Dimax (under development)

WEMAU011 Proceedings of ICALEPCS2011, Grenoble, France

678C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Current Applications
The first application on top of LIMA was the ESRF

Frelon TACO device server; aimed to be 100 %
compatible with its predecessor. The existence of an
important amount of SPEC code for different Frelon-
based experimental setups allowed the fast
commissioning and validation of the basic LIMA
elements.

In parallel, a generic LIMA TANGO device server was
developed, with the ESRF Maxipix detector as its first
specific hardware plug-in. As new hardware plug-ins
were added, this new TANGO interface gradually
exported the full LIMA potential: multi-chip
reconstruction, RoI-counters, frame accumulation,
background/flat-field, video and so on. New SPEC code
has been written to efficiently exploit this new 2D
detector functionality.

A different YAT-based TANGO server interface has
been developed and maintained by SOLEIL Synchrotron,
allowing LIMA integration in their control system.

Finally, an X-BPM TANGO server on top of LIMA has
been developed; its installation currently uses Basler
cameras.

Operating Systems
LIMA has been mainly developed on Linux operating

systems, mainly on SuSE Linux 8.2 (i686) and on RedHat
EL 5 (x86_64). It has been later ported to RedHat EL 4
(i686) and OpenSuSE 11.2 (i686 & x86_64).

A Windows portage has been made by coding basic
thread management primitives. After the validation of the
camera simulator, real hardware plug-ins like the
PCO.Dimax are under development.

Performance
The first validation of LIMA performance has been

made with the ESRF Frelon HD camera controlled by a
Transtec X2100 Workstation (Dual Intel Xeon @ 2.66
GHz, 32-bit). Continuous Frame-Transfer-Mode
acquisitions at 30 frames/sec (120 MBytes/sec) can be
performed with active SPS online display and parallel
data saving. Higher frame rates (about 1000 frames/sec)
can be achieved on the same PC in stripe (spectrum)
mode with hardware binning and Kinetics hardware RoI.
As with its non-Lima predecessor, debugging output must
be disable to not slowdown acquisition.

The most recent high performance LIMA validation has
been done at the ID03 ESRF BL with the Maxipix
detector in single-chip configuration. The control PC is a
more powerful Ecrin/Trenton server (Dual Quad Core
Xeon E5335 @ 2.0 GHz). Acquisitions at the maximum
frame rate (about 1500 frames/sec), limited only by the
maximum Espia board data rate (180 MBytes/sec), are
possible with parallel saving and 5 active RoI-counters
definitions.

Code Repository
The LIMA source code is available under the Gnu

Public License at the European Phonton-Neutron (EPN)
Science Campus Web site [1]. Its development is
managed by GIT; the repository can be accessed at [4].
The official project documentation can be found at [5].

ACKNOWLEDGEMENTS
Important contributions in hardware plug-ins and

Nexus file saving format have been made by F. Langlois,
A. Noureddine, A. Buteau and X. Elattaoui from SOLEIL
Synchrotron inside a collaboration framework on LIMA
development. In the same way, M. T. Nuñez-Pardo-de-
Vera (PETRA III/DESSY) and C. Nielsen (ADSC) have
also implemented specific hardware plug-ins.

CONCLUSIONS
A generic Library for IMage Acquisition (LIMA) has

been developed for controlling high throughput 2D
detectors. It allows the optimum exploitation of hardware
optimizations, like pixel binning and RoIs, but it also
provides software alternatives for detectors that do not
implement them. A common set of software image
operations (geometric transformations, processing,
calculations, saving and visualization) is available for all
the detectors. Their multi-threaded nature notably
increase acquisition performance on multi CPU/cores PC.
The modular library design simplifies the integration of
new hardware and software functionality (plug-ins). An
increasing number of supported detectors are already used
in Synchrotron facilities with good performance results.

REFERENCES
[1] http://forge.epn-campus.eu/projects/lima
[2] C. Ponchut, J.M. Rigal, J. Clement, E. Papillon, A.

Homs and S. Petitdemange, “MAXIPIX, a Fast
Readout Photon-Counting X-Ray Area Detector for
Synchrotron Applications”, JINST 6 (2011) C01069.

[3] J.C. Labiche, O. Mathon, S. Pascarelli, M.A.
Newton, G.G. Ferre, C. Curfs, G. Vaughan, A. Homs
and D. Fernandez-Carreiras, “The Fast Readout Low
Noise Camera as a Versatile X-Ray Detector for
Time Resolved Dispersive Extended X-Ray
Absorption Fine Structure and Diffraction Studies of
Dynamic Problems in Materials Science, Chemistry
and Catalysis”, Rev. Sci. Instrum. 78/9 (2007)
091301.

[4] git://git.epn-campus.eu/repositories/Lima
[5] http://lima.blissgarden.org/

Proceedings of ICALEPCS2011, Grenoble, France WEMAU011

Software technology evolution 679 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

