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Abstract 
A significant number of 2D detectors are used in large 

scale facilities' control systems for quantitative data 
analysis. Common control parameters and features can be 
identified in these devices, but most of manufacturers 
provide specific software control interfaces. A generic 
image acquisition library, called LIMA, has been 
developed at the ESRF for a better compatibility and 
easier integration of 2D detectors to existing control 
systems. Its design is driven by three main goals: i) 
control system independence; ii) a rich common set of 
functionalities, providing alternative software solutions 
when not implemented by hardware; and iii) intensive use 
of multi-threaded algorithms synchronised by events for 
ensuring performance of high throughput detectors. LIMA 
currently supports a dozen of image detectors from 
different manufacturers, half of them being integrated by 
collaborating institutes and manufacturers. Although still 
under development, LIMA features so far basic image 
transformation, processing and reduction, fast data saving 
on different file formats, among other features. Its 
modular design allows not only the extension of generic 
hardware and software functional blocks, but also the 
integration of user-defined post-processing algorithms. 

INTRODUCTION 
The standard beamline (BL) control software at the 

ESRF is basically built on top of SPEC, a versatile 
hardware control application, and a variety of distributed 
device servers accessed through the TACO and TANGO 
middlewares. A considerable number of 2D detectors 
have been interfaced in the past using common generic 
CCD TACO and TANGO device server interfaces, 
notably simplifying the client SPEC code. However, the 
real code implementing the configuration and control of 
the image acquisition process was copied and/or rewritten 
on each new detector. Moreover, new features had to be 
manually added on existing detectors, which resulted 
unpractical in many cases. 

In order to go a step further in the standardisation of the 
control of these devices, we have developed a generic 
Library for IMage Acquisition (LIMA) [1]. It provides the 
common functionality expected from 2D detectors, 
exploiting the hardware capabilities to their maximum 
extent, and complementing by software the rest features 
not provided by the detector. 

BUILDING BLOCKS 
A key design goal was to not degrade the performance 

of high throughput detectors. This implied the use of 
parallelisable multi-threaded algorithms for an optimum 

usage of multi-CPU/cores in modern PCs, and their 
corresponding event-based synchronisation. The result 
was the development of ProcessLib, an auxiliary multi-
threaded image processing framework. It manages the 
execution of arbitrary sequences of tasks, combined in 
chained and/or parallel configurations. Once added to the 
run queue, a task is executed as soon as a working thread 
is available, normally when a CPU/core is idle. The 
asynchronous notification of the task end is implemented 
through callbacks. 

Another basic element developed for LIMA is a 
message logging framework for code tracing and 
debugging. It can be dynamically configured to 
enable/disable individual functional blocks, and, in an 
independent way, to change the log verbosity. The output 
trace is indented following the function call stack, which 
is different for each active thread. Special efforts were 
made to reduce code execution slowdown when no trace 
is active, while keeping this dynamic, thread-safe 
behaviour. 

The core of the library has been written in C++ and 
Python wrapping through SIP has been implemented for 
most of the classes.  

LIBRARY STRUCTURE 
The general LIMA layout is shown in Fig. 1. 

 
Figure 1: General LIMA layout. 
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The library structure divided into two main layers: 
control, containing the common control and processing 
code, and hardware, implementing the detector-specific 
part. The control layer provides the library interface to the 
high level application. User requests to configure and 
control the acquisition are gathered by the control layer, 
so the hardware layer functionality is limited to the 
generation the image frames in a best-effort basis. The 
control layer is responsible of: i) adapting the received 
image geometry if it does not match the user requests, and 
ii) execute the frame processing chain. 

Hardware Layer 
The detector-specific code, called “hardware plug-in” 

must implement a well-defined “hardware interface”. It 
provides basic acquisition start/stop/status control as well 
as entry points to functional blocks, corresponding to the 
hardware capabilities. Only three control blocks are 
mandatory:  

• Detector information: name, model, dimensions. 
• Synchronisation: internal/external trigger, exposure 

time and sequencing. 
• Image buffer management,  for which helper 

classes are provided with a default behaviour.  
All the other capabilities are optional. They include: 

• Pixel binning (scaling). 
• Sub-image / region-of-interest (RoI). 
• Image horizontal / vertical flip. 
• Shutter control.  
• Video cameras: standard mono/color image formats 

and gain settings.  
This modular design simplifies the integration of new 

hardware functionality without recoding existing 
hardware plug-ins.  

One important requirement imposed on the hardware 
plug-in is its responsibility of generating events on every 
acquired frame. In case the detector API does not provide 
this feature and relies on blocking/polling interfaces, 
auxiliary thread management helper classes are provided 
to simplify the implementation of frame ready callbacks. 

As a general rule, the hardware layer is queried to 
check if it can completely or partially satisfy a particular 
user request. For instance, when the user asks for a pixel 
binning combination that is not implemented, the 
hardware layer replies with the highest binning it can 
provide. The same best-effort approach should be 
followed with RoIs, where some hardware alignment 
constrains might require returning a region bigger than 
the requested one. The user can always select if a feature 
is to be implemented entirely by hardware, by software or 
by a combination of both. 

It is worth to remark that to add support for a new 
detector its only required to implement: 

1. The detector information control block 
2. The synchronisation control block 
3. Acquisition start/stop/status control and frame-

ready callbacks 

This can be coded either in C++ or Python. Such a 
minimal implementation will already provide the user 
with a fully operational system exporting all the common 
software features. 

Control Layer 
A modular approach is also found in the control layer, 

the core of LIMA and its most complex element. Different 
functions are activated through individual blocks, all of 
them coordinated by a global control class. The user 
configures the acquisition using these different modules, 
many of them implementing parameter caches to 
minimise hardware access. Once all the settings have 
been fixed, a “prepare acquisition” command 
synchronises the hardware configuration, including the 
(sometimes slow) memory buffer allocation. This 
minimises the delay in the “start acquisition” command, 
which can add undesirable latencies in the software 
synchronisation with other devices like motors or LIMA 
detectors. 

The dynamics of the control layer starts with the 
“hardware frame ready” callback. The first task to 
accomplish is the software frame reconstruction, needed 
if the detector pixel readout sequence does not correspond 
to its real geometry [2]. Even if this is a detector-specific 
functionality, it is performed in the control layer to exploit  
the ProcessLib capability of parallel processing different 
frames on different CPU/cores.  

Individual counters are updated as the frame progresses 
in the processing chain: last-image-acquired (hardware), 
last-base-image-ready (geometric reconstruction and 
transformations), last-image-ready (basic processing),  
last-image-saved (data storage), etc. The user can register 
to an acquisition status callback that notifies each time 
these image counters progress. 

Detector-specific Configuration 
The control layer provides a user interface to standard 

acquisition parameters. However, virtually all detectors 
implement specific settings, which can range from chip 
timing and readout configurations to generic I/O signal 
management and ADC gain/threshold levels. To avoid a 
complex generic infrastructure for these controls, the 
hardware plug-in is responsible to directly export them to 
the user through a detector-specific control block. The 
control layer is not aware of such parameters, so 
mechanisms have been foreseen to notify important 
changes that affect the acquisition. For instance, a “max 
image size changed” callback must be implemented by 
the hardware if the user can select among detector profiles 
with different effective image sizes. 

AVAILABLE FEATURES 

Geometric Transformations 
Four basic image transformations are implemented: 

image rotation (90º, 180º, 270º), horizontal and/or vertical 
flip, pixel binning (scaling) and RoI (sub-image). From 
the user coordinates point of view, they are applied in that 
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order. This means that binning factors include the rotation 
mode, and RoI coordinates are relative to binned pixels. 
The simultaneous activation of these transformations 
requires more complex calculations when some of them 
are either totally or partially done by hardware. In 
addition, the implementation of arbitrary pixel binning 
combinations, including values that are not integer 
divisors of the detector size, is under development. 

Some scientific techniques exploit 2D detectors to 
measure 1D spectra in image stripes. Pixel binning in one 
dimension is normally used to improve signal to noise 
ratio. Such configurations can lead to a very high frame 
rate (above 1 KHz), interesting in time-resolved 
experiments [3]. To keep performance under these 
conditions, LIMA implements the stripe concatenation 
mode, where a long sequence of many frames can be 
read/saved at once as a single concatenated image without 
additional memory copies. In case the original 2D images 
are required for analysis (i.e., no binning applied), the 
same stripe calculation can be obtained by the 
independent RoI-to-spectrum software operation. 

Basic Image Processing 
Hardware detector constrains can limit the pixel 

integration either in exposure time (Frelon) or in dose 
(Maxipix [2]). A simple solution to this problem is 
provided through the frame software accumulation. It is 
activated by specifying a maximum frame exposure time; 
the control layer programs the real number of hardware 
frames depending of the requested total exposure. In 
addition to the accumulated image, a saturation pixel 
mask can also be obtained from the algorithm, important 
to detect non-linear software artefacts. 

Basic image processing algorithms like background 
subtraction, flat-field correction and pixel masking are 
already integrated. Standard calculations used for Beam-
Position-Monitoring (BPM) including intensity sum, 
average, std. deviation, min/max and centroid position are 
also available in a per-RoI basis. That is, the so-called 
“RoI-counters” are calculated in parallel on multiple sub-
images for each frame. The history of the all the RoI-
counters is available during and/or after a sequence of 
images (scan). 

Data Saving 
Data storage is a key element in high performance 

image acquisitions. In addition to the detector images, 
meta-data describing the acquisition environment, 
including user-supplied meta-data, must be saved. The 
meta-data concept is called “frame-header” in LIMA  and 
is implemented in the core of ProcessLib as key→value 
maps. Three levels of meta-data are identified:  

• Static: does not change during the life of the 
process (detector-specific: model, serial number). 

• Common: is shared by all the frames in an 
acquisition sequence (user-defined sample name, 
sequence start date/time). 

• Frame: specific information when frame was taken 
(high resolution time stamp, instantaneous internal 
and/or external counters values). 

There are three file saving modes currently 
implemented in LIMA. They differ in the way to trigger 
the saving of each frame: manual (user request), auto-
frame (frame is ready) and auto-header (both the frame 
and its user-defined header are ready). 

The following file formats are currently supported: 
• EDF: ESRF Data Format 
• Nexus/HDF5: part of the Common Data Model 

(CDM), developed by SOLEIL and ANSTO  
• CBF: Crystallographic Binary Files. It is optimised 

in LIMA with parallel frame compression.  
• Raw 

The library also allows the parallel saving of multiple 
file streams on different medias. This data replication 
technique has proven to be efficient in high throughput 
detectors when multiple endpoints (PC, file servers) must 
receive the same data. Data endpoints examples include: 
online data analysis workstation, central data storage 
server (backup, long-term archiving) and local NAS with 
BL user disks (to be brought to their home institute). 

Online Visualisation 
Online data visualization is required in must of the 

cases as a direct feedback of the acquisition evolution. 
Current LIMA display mechanisms export the image data 
to a channel, to be read by a separate client application 
that performs the real visualisation. One method publishes 
the data on the standard ESRF SPEC Shared memory 
(SPS). A second method exports the generic LIMA video 
interface through the TANGO LIMA server. In each case, 
a dedicated client Qub/Qt4-based application shows the 
live image. 

External Software Plug-ins 
Finally, user-defined software plug-ins can be used to 

execute arbitrary image-based operations. An entry point 
in the control layer completely exports the ProcessLib 
functionality, allowing an external code to be called on 
every frame. Again, the external software operation can 
be implemented C++ or Python.  

PROJECT STATUS 

Supported Detectors 
The list of currently supported detectors is: 

• Camera simulator: a pure software plug-in 
• ESRF Espia-based Frelon camera and Maxipix 

detectors (Single chip, 2x2 and 5x1 chip arrays) 
• Dectris Pilatus and Mythen 
• GigE Basler and Prosilica cameras 
• ADSC and MarCCD detectors 
• XPAD pixel detector 
• Roper Scientific cameras through PVCAM 
• PCO.Dimax (under development) 
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Current Applications 
The first application on top of LIMA was the ESRF 

Frelon TACO device server; aimed to be 100 % 
compatible with its predecessor. The existence of an 
important amount of SPEC code for different Frelon-
based experimental setups allowed the fast 
commissioning and validation of the basic LIMA 
elements. 

In parallel, a generic LIMA TANGO device server was 
developed, with the ESRF Maxipix detector as its first 
specific hardware plug-in. As new hardware plug-ins 
were added, this new TANGO interface gradually 
exported the full LIMA potential: multi-chip 
reconstruction, RoI-counters, frame accumulation, 
background/flat-field, video and so on. New SPEC code 
has been written to efficiently exploit this new 2D 
detector functionality. 

A different YAT-based TANGO server interface has 
been developed and maintained by SOLEIL Synchrotron, 
allowing LIMA integration in their control system. 

Finally, an X-BPM TANGO server on top of LIMA has 
been developed; its installation currently uses Basler 
cameras. 

Operating Systems 
LIMA has been mainly developed on Linux operating 

systems, mainly on SuSE Linux 8.2 (i686) and on RedHat 
EL 5 (x86_64). It has been later ported to RedHat EL 4 
(i686) and OpenSuSE 11.2 (i686 & x86_64). 

A Windows portage has been made by coding basic 
thread management primitives. After the validation of the 
camera simulator, real hardware plug-ins like the 
PCO.Dimax are under development.  

Performance 
The first validation of LIMA performance has been 

made with the ESRF Frelon HD camera controlled by a 
Transtec X2100 Workstation (Dual Intel Xeon @ 2.66 
GHz, 32-bit). Continuous Frame-Transfer-Mode 
acquisitions at 30 frames/sec (120 MBytes/sec) can be 
performed with active SPS online display and parallel 
data saving. Higher frame rates (about 1000 frames/sec) 
can be achieved on the same PC in stripe (spectrum) 
mode with hardware binning and Kinetics hardware RoI. 
As with its non-Lima predecessor, debugging output must 
be disable to not slowdown acquisition. 

The most recent high performance LIMA validation has 
been done at the ID03 ESRF BL with the Maxipix 
detector in single-chip configuration. The control PC is a 
more powerful Ecrin/Trenton server (Dual Quad Core 
Xeon E5335 @ 2.0 GHz). Acquisitions at the maximum 
frame rate (about 1500 frames/sec), limited only by the 
maximum Espia board data rate (180 MBytes/sec), are 
possible with parallel saving and 5 active RoI-counters 
definitions.  

Code Repository 
The LIMA source code is available under the Gnu 

Public License at the European Phonton-Neutron (EPN) 
Science Campus Web site [1]. Its development is 
managed by GIT; the repository can be accessed at [4]. 
The official project documentation can be found at [5]. 
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CONCLUSIONS 
A generic Library for IMage  Acquisition (LIMA) has 

been developed for controlling high throughput 2D 
detectors. It allows the optimum exploitation of hardware 
optimizations, like pixel binning and RoIs, but it also 
provides software alternatives for detectors that do not 
implement them. A common set of software image 
operations (geometric transformations, processing, 
calculations, saving and visualization) is available for all 
the detectors. Their multi-threaded nature notably 
increase acquisition performance on multi CPU/cores PC. 
The modular library design simplifies the integration of 
new hardware and software functionality (plug-ins). An 
increasing number of supported detectors are already used 
in Synchrotron facilities with good performance results. 
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