
WEB-BASED CONTROL APPLICATION USING WEBSOCKET

Y. Furukawa
SPring-8/JASRI, Kouto, Sayo-cho Hyogo, 679-5198, Japan.

Abstract
The WebSocket [1] allows asynchronous full-duplex

communication between a Web-based (i.e. JavaScript-
based) application and a Web-server. WebSocket started
as a part of HTML5 standardization but has now been
separated from HTML5 and has been developed
independently. Using WebSocket, it becomes easy to
develop platform independent presentation layer
applications for accelerator and beamline control
software. In addition, a Web browser is the only
application program that needs to be installed on client
computor. The WebSocket-based applications
communicate with the WebSocket server using simple
text-based messages, so WebSocket is applicable
message-based control system like MADOCA, which was
developed for the SPring-8 control system. A simple
WebSocket server for the MADOCA control system and a
simple motor control application were successfully made
as a first trial of the WebSocket control application. Using
Google-Chrome (version 13.0) on Debian/Linux and
Windows 7, Opera (version 11.0) on Debian/Linux and
Safari (version 5.0.3) on Mac OS X as clients, the motors
can be controlled using a WebSocket-based Web-
application. Diffractometer control application use in
synchrotron radiation diffraction experiment was also
developed.

INTRODUCTION
Web-based applications have many advantages over

custom-built applications developed using Graphical User
Interface (GUI) building toolkits: 1) platform
independence; 2) easy to develop; 3) and easy to
distribute the latest version. Based on these advantages,
there have been many attempts to introduce Web-based
applications for accelerator and experimental control.

Platform independence comes from the fact that most
major Web browsers can run not only on traditional
personal computer or workstation OSs such as Microsoft
Windows, Mac OS X, most Linux distributions, Solaris,
and FreeBSD, but can also run on mobile device OSs,
such as Android OS and iOS. This gives us many
candidates for an operator console and different styles of
operation of accelerators and physical experiments. Using
a mobile device, operators can access equipment besides
it, and can easily troubleshoot the devices, if required.

There are many tools available for developing Web-
based applications, including independent design and
development tools such as Microsoft Visual Studio and
Eclipse, and built-in browser tools. It is easier to develop
applications using these tools than to use other language
and tool kits.

A Web-based application is loaded from a Web server
before every execution. It is easy to maintain the latest
versions of all the running applications because you need
to replace the Web application on the web server; you
need not distribute and ask your application users to
install a new version.

Despite these advantages, Web-based applications have
a big disadvantage, i.e. a Web-application (HTML-based
application) cannot make a full-duplex communications
with a server application because the HTTP
communication starts only from a client. This means that
a server cannot send any information to a client without
access from the client.

To solve this problem, a “long polling” mechanism was
introduced in “Comet” [3]. A Comet server does not
respond immediately to the client request (usually XHR is
used). It waits for a server event, and the server then
responds to the client with information on the event.
Actually, the Comet server has to respond with in a
definite time (usually 30 s) because Web browsers detect
HTTP session time out.

This mechanism works well. However, it requires that
an HTTP communication session be started for every long
polling request. This results in a heavy; load on the Comet
server and it is impossible to send information on client
events to the Comet server during long polling periods.
This means that it is difficult to realize a “true” control
application using Comet.

The WebSocket [1] protocol was proposed to give true
full-duplxy communication ability to Web-based
applications in the context of HTML5. WebSocket is
currently independent of HTML5 standardization, but is
one of the important components of HTML5.

WebSocket is very easy to handle in a Web-based
application, i.e., it can be easily handled in a program
written using JavaScript. WebSocket can handle text and
binary data. However, it is easy to handle text data in a
JavaScript application. This means that it is easy to
develop a WebSocket-based application for a text-
message-based control system like MADOCA[6] or
STARS[7]. Once you make a gateway from the
WebSocket to your control system, you can make
JavaScript-based applications. Therefore, a gateway
(WebSocket server) to the MADOCA was built and
several Web-based applications were tested, as described
in the following sections.

SERVER APPLICATION

A schematic of a control system with WebSocket and
MADOCA is shown in Fig.1. A WebSocket server has
been newly built as a gateway to the MADOCA control
system. The server has to treat the negotiation phase of

Proceedings of ICALEPCS2011, Grenoble, France WEMAU010

Software technology evolution 673 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

the WebSocket protocol. This protocol has been revised
and the latest version is hybi-10[4] but most Web
browsers are implemented on hybi-00[5]; therefore, our
WebSocket server is implemented on the basis of hybi-00.
The WebSocket server can co-exist with an HTTP server
using the same port, i.e., 80 (or 443). In this case, the
Web server has to treat the negotiation phase of the
WebSocket, while our WebSocket server is running on
port 10101 because of continuity of service. To control
optical components in the SPring-8 X-ray beamlines, a
request server is introduced for the beamline control
system on the port 10101.

Figure 1: A schematic of WebSocket and MADOCA
control system. Orange faced component, MS (Message
Server), CI (Command Interpreter) and AS (Access
Server) are standard MADOCA components [6]. Green
faced components are newly developed for WebSocket
Application.

This server is a simple socket server and with a small
modification, we can adapt the server for both simple
socket service and WebSocket service. The server decides
which service is required from the first received string.
For the simple socket service, the MADOCA format
message will be received and for the WebSocket service,
the format defined in hybi-00 or hybi-09 will be received,
which is the same as an HTTP request, i.e., “ GET /demo
HTTP/1.1” or “GET /ws HTTP/1.1”. After establishing a
connection with a client, the WebSocket server receives
MADOCA format from the client and sends it to a
MADOCA-based control system. The WebSocket server
then receives results from the MADOCA-based control
system and sends them back to the client.

CLIENT APPLICATION
Client applications are written in JavaScript. In

JavaScirpt, you can open the WebSocket using the “ws”
object, as shown below

ws = WebSocket(“ws://<hostname>[:port]”);,
send a message with

ws.send(<message>);,
and receive a message with

ws.onmessage() = function(event) {
var message = event.data;
…

}.

Note that the receive routine is called asynchronously. So
you need to handle it with an event-driven handler.

As shown above, the WebSocket interface can be
handled very easily.

EXAMPLES
A stepper motor control GUI was developed for the

first case of the WebSocket application as shown in Fig.2.
The user can watch the motor status, can control motor
rotation and can modify motor parameters using this Web
page.

Figure 2: Web-application for stepper motor control.

A more complicated example shown in Fig. 3. is a user
interface for a diffractometer control system at the
SPring-8 diffuse scattering beamline. This Web page was
designed using BlueGriffonTM[8] which is a useful tool for
building Web pages. Using this Web page, a
diffractometer user can tune the slit and detector
conditions and make a series of X-ray diffraction
measurements. The scan results are shown in real time in
the graph area which is realized by a “canvas” element
defined in the HTML5 specification. In this case, the
“RGraph” library [9] is used to draw the graph in the
canvas element.

MS

GUI

CI

AS

WebSocket
Server

HTTPD

Web-
browser

Note PC, PDA

H
TTP

WorkStation

VME VME VME

W
ebSocket

html
css

Java
script

WEMAU010 Proceedings of ICALEPCS2011, Grenoble, France

674C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Figure 3: A diffractometer control Web-application.

Figure 4: The diffractometer control Web-application
running on a mobile device (SAMSUNG Galaxy Tab).

AVAILABLE WEB BROWSERS
The Following Web browsers were tested using the

diffractometer-control GUI on a PC, and it was found to
work well: Google-Chrome 13.0 on Windows,
Debian/GNU Linux and Ubuntu 11.04; Safari on Mac OS
X; Firefox 4 on Ubuntu 11.04; and Opera 11.50 on
Debian/GNU Linux and Ubuntu 11.04. For Opera and
Firefox, WebSocket is disabled as default, so you need to
turn on it using “about:config.”

Web browsers on mobile devices, Opera Mobile 11.10
on Android OS 2.3.3 (you need to enable WebSocket) and
Safari on iPad (1st generation) were available for the
WebSocket client. Fig. 4 shows a diffractometer control
running on “SAMSUNG Galaxy Tab” which is an
Android based tablet with a 7 in LCD screen.

CONCLUSION
As shown in this paper, Web-application can be built

using the WebSocket protocol. I have to emphasize that
no add-ons are required for executing WebSocket-based
applications, just an HTML5 based Web browser.
HTML5-based Web-applications provide freedom from
the platform, so you can use Web-based applications not
only in the central control room but also with various type
of equipments. This means the Web-application can be
used for local tuning or trouble shooting of the equipment.
The web-based application is also useful for remote
experiments. You can easily maintain the newest
application running on the remote user's PC because the
application is loaded from the Web server every time it
has to be executed.

REFERENCES
[1] http://websocket.org/
[2] L. Zambon, M. Lonza, “WEB GUIS FOR THE TANGO

CONTROL SYSTEM”, Proc PCaPAC 2006 P.75 (JLab.
USA).

[3] http://infrequently.org/2006/03/comet-low-latency-data-for-
the-browser/

[4] http://tools.ietf.org/html/draft-ietf-hybi-
thewebsocketprotocol-10

[5] http://tools.ietf.org/html/draft-ietf-hybi-
thewebsocketprotocol-00

[6] R. Tanaka, T. Fukui, K. Kobayashi, T. Masuda A. Taketani,
T. Wada and A. Yamashita, “The first operation of control
system at the SPring-8 storage ring”, Proc. of
ICALEPCS'97, Beijing, China, (1997) p.1

[7] T.Kosuge, et., al., “Recent Progress of STARS”, Proc
PCaPAC 2005 (2005, Hayama, Japan)

[8] http://bluegriffon.org/
[9] http://www.rgraph.net/

Proceedings of ICALEPCS2011, Grenoble, France WEMAU010

Software technology evolution 675 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

