
A REMOTE TRACING FACILITY FOR DISTRIBUTED SYSTEMS

F. Ehm, A. Dworak, CERN, Geneva, Switzerland

Abstract
Today, CERN's control system is built upon a large

number of C++ and Java services producing log events. In
such a largely distributed environment these log messages
are essential for problem recognition and tracing. Tracing
is therefore vital for operation as understanding an issue
in a subsystem means analysing log events in an efficient
and fast manner. At present 3150 device servers are
deployed on 1600 diskless frontends and they send their
log messages via the network to an in-house developed
central server which, in turn, saves them to files.
However, this solution is not able to provide several
highly desired features and has performance limitations
which led to the development of a new solution. The new
distributed tracing facility fulfils these requirements by
taking advantage of the Streaming Text Oriented
Messaging Protocol (STOMP) and ActiveMQ as the
transport layer. The system not only allows storing critical
log events centrally in files or in a database but also
allows other clients (e.g. graphical interfaces) to read the
same events concurrently by using the provided Java API.
Thanks to the ActiveMQ broker technology the system
can easily be extended to clients implemented in other
languages and it is highly scalable in terms of
performance. Long running tests have shown that the
system can handle up to 10.000messages/second.

INTRODUCTION
The Controls Middleware (CMW) project was initiated

at CERN [1] in 2006 to provide a unified communication
middleware for operating the particle accelerator
infrastructure. This includes communication with servers
that directly operate hardware sensors and actuators. It
enables for example operators in the CERN Control
Centre (CCC) to control equipment remotely via in-house
developed Graphical User Interfaces (GUI).

Figure 1: A simplified architectural overview on CERN’s
control system middleware components.

As illustrated in Figure 1 the CMW middleware is
formed by a CORBA-based solution (RDA libraries) and
a JMS based messaging infrastructure. Both cover similar
use cases but they target at different system environments.
JMS is used for high level middleware services and RDA
for low level services running on hardware where very
low message latency is demanded. The RDA library for
example, is required by around 4000 Front End Servers
(FES) running on 1600 Front End Computers (FEC) to
allow getting/setting of hardware parameter values
remotely.

Tracking potential issues in the middleware
communication library layer is not an easy task as the
involved services are distributed among many machines.
In fact, there are two main problems:
 FECs are diskless systems running a real time

LynxOS [2] operating system. Because there is no
storage media it is not possible to write log
messages to a local file.

 For other services which do have local disk storage
it is difficult to correlate log events among them
because files are distributed on various machines.
Hence, accessing the data is a time consuming
manual operation and slows down problem
analysis.

Therefore, in the early days of CMW the idea of having
a remote tracing facility was initiated and implemented. It
allows collecting log events coming from RDA servers
and from a subset of the middleware services.

THE CURRENT SYSTEM
In the current system log events are generated by the

FECs and sent via UDP to a Java based central log server
in plain text format. This server in turn converts the
messages and writes them to a size-based rotating file.

Next to this, the CMW Admin GUI connects to the
server and displays the log events received. It also allows
setting a new log level via the RDA library remotely.

It is important to mention in this context that the
services on FECs are hard real time processes which
should be affected as little as possible by any other
activity running on the same machine. Therefore, the
communication between the CMW modules and the
central log server is based on UDP as it is non-blocking.

Since the initial deployment this setup has been very
useful for problem analysis and tracing. In particular the
fact that a GUI enables a fast and easy information access
makes it crucial for operation.

However, the demands have changed over time and the
following problems have been identified:
 When setting a new log level in the CMW module all

connected CMW Admin GUIs receive messages
from the new level.

WEMAU001 Proceedings of ICALEPCS2011, Grenoble, France

650C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

 Messages are lost due to a single threaded message
acceptor in the central server.

 All messages go to one size based rotating file. When
one source sends many events there is the risk that
messages from other sources will be dropped.

 More messages need to be handled by the system
since more services than originally planned are
deployed.

 The C++ library only allows sending data to a remote
host but not to a local file or to console output.

As a result of these problems it was decided to review
and to implement a new central log event service.

REQUIREMENTS
As a first step towards a future solution the following

requirements and limitations were defined:
 The new system must support log events from Java

and C++ sources. Other languages may be
supported.

 For C++ programs a lightweight library with little
dependencies providing an easy API for storing
events locally and sending them remotely should
replace the old one.

 Operation overhead should be as low as possible
and sufficient monitoring information must be
provided.

 TCP for reliable and UDP for unreliable transport
should be supported.

 Backward compatibility to legacy sources must be
guaranteed.

 Support for precise timestamp information like
microseconds and time zone where applicable.

 The log viewer must be provided as a standalone
application, as well as a module which can be
integrated into existing Java based diagnostic tools.

 Users should be able to read log messages
remotely from a graphical user interface or via a
console command online and offline. Online means
that events are passed immediately to the client
whereas offline means that the client has to
actively poll for new events.

Restrictions
It should be mentioned that restrictions for the new

system have also been defined:
 No operation critical system should depend on the

distributed log event service.
 Messages may be lost due to inherent

characteristics of the UDP transport layer.
 Only services running unattended are targeted to be

used. This excludes highly dynamic user programs
such as GUI’s or console commands.

EXISTING MARKET SOLUTIONS
Collecting and storing log events from processes

running on a Linux/Unix system is a well explored area
and standardized for example via the widely used syslog

protocol [3]. Here, processes send messages to a service
running locally. The default for most Linux derivatives is
syslogd which stores these events to local disk or
forwards them to a remote syslog service via UDP. Other
implementations like rsyslogd, msyslogd or syslog-ng
exist and provide more features than syslogd. In addition,
there are commercial and non-commercial tools to do
analysis on the collected data. They allow an easier access
via graphical interfaces (e.g. Chainsaw [4]) and partly
provide extensive search and trending capabilities (e.g.
LogZilla [5] and Splunk [6]).

Why Can We Not Take Existing Solutions?
As for the acquisition layer some of the present syslog

implementations cover parts of the requirements but the
main problem resides within the protocol itself. It
contains limitations such as the missing support for
microseconds and the maximum payload length of 2048
Bytes. Apart from this, none of the present syslog
libraries supports setting the log level remotely

As for the C++ logging library there are many solutions
available. However, most of them are in an early phase of
development, do not support fully the requirements, are
not stable enough or their dependencies are not supported
on the current FECs.

Most of the existing GUI applications which are able to
read events online are language dependent and connect
directly to the log source. However, the new system
requires reading log events from sources implemented in
various languages and forbids direct connection.

Products like LogZilla or Splunk operate offline and
provide fully featured tools for analysis and charting.
However, they are proprietary solutions and do not allow
to be integrated into existing in-house developed tools.

THE NEW ARCHITECTURE
Because there is no existing solution which satisfies the

previously listed requirements a new central log event
service has been implemented in Java and C++. As Figure
2 shows the Converters are responsible for accepting
incoming log events, converting them into an internal
common message format and sending them to the
messaging service where they again can be read out by a
LogReader or by a simple console reader.

Additionally, selected data may be stored permanently
into a database or into local files.

The Log Sources
A program which requires sending data to the central

service has two possibilities to do so: the first is the Linux
standard syslog protocol and the second the newly
developed CMWlog. Both can be used from C++ and
Java. The main difference is that CMWlog supports
microseconds and time zone information as well as TCP
and UDP. It facilitates the STOMP [7] message frame and
hence, is clear text based. STOMP is an open source
protocol chosen for many messaging solutions [8] from
various vendors and has gained great popularity in recent

Proceedings of ICALEPCS2011, Grenoble, France WEMAU001

Distributed computing 651 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

years. Becau
this project.

To allow J
of a large de
used Log4J [

The New C
CMWlog

for C++ pro
resembles th
logging to f
was develop
supports sev
but also old P

The library
configuration
setting the ef
CMWlog is
small memor
is extremely
systems. An
method calls
behaviour in
user’s code e

The librar
Appenders [
channelling

Distributio
After a Co

event it is th
provided by
ActiveMQ su
and has bee
2005. As it h
choice for di
of client appl

Data arriv
topics. That
|unique ident

use it is so larg

Java based sy
ependency set
[9] framework

C++ Log Li
is a simple b
ograms whic
he Log4j Ja
files, to netwo
ped to replace
veral platform
PowerPCs run
y is fully con
n files. Like t
ffective log le
written to b

ry footprint an
y important
nother importa
s from the ru

n case of I/O
execution.
ry utilizes co
[9]. These a
log events to

on of the Da
onverter have
hen sent via J
y the Apac
upports failov
n used in the

has proven to
istributing log
lications.

ving at the br
is, each log so
tifier which m

gely supported

ystems withou
a new extens

k has been wri

brary
but full-featur
ch - to a re
ava library, p
ork, or to oth
e the old CM

ms such as Lin
nning LynxOS
nfigurable fro
the previous v
evel remotely
be thread-safe
nd resource c
for previousl
ant feature is
unning user t
errors not to

oncepts like
allow a high
o different de

Figure 2: Arc

ata
e accepted an
JMS to a cent
che ActiveM
ver and cluste
e CERN con
be very reliab

g events to a p

roker is organ
ource is ident

maps in the bro

d it was chose

ut the introdu
sion for the w
itten.

red logging li
easonable ext
providing fle
her destination

MW logging li
nux and Win
S.
om the code o
version it sup
. At the same

e and it repre
consumption w
ly mentioned

s the non-bloc
thread and p
affect time cr

Loggers and
h flexibility
estinations suc

chitectural Ov

nd converted
tral messaging

MQ [13] pro
ering mechan

ntrols system
ble it was a na
potentially larg

nized internal
tified globally
oker to one spe

en for

uction
widely

ibrary
tent -
exible
ns. It
ibrary
ndows

or via
pports
e time
esents
which
d old
cking

proper
ritical

d the
when
ch as

stand
requ
to be

The
A

mess
it is
sourc
of f
mass
pass
data
and s

Cu
mess
seco
log
comp

It
exten
exam
from
libra

To
mana
are e

verview of the

a log
g bus
oduct.
nisms,

since
atural
ge set

lly in
y by a
ecific

topic
log s

Stor
In

into
been
write
exce
into
stora
data
proje
are s

dard output,
uired, the modu
e extended to o

e Converters
Converter is

sages only fro
implemented

ce routing fra
functionalities
sively. It han
es the receiv
is then turne

subsequently
urrently, there
sages followi
nd reads mes
sources an

patibility with
is very simp

nd the usage
mple for this
m Java progra
ary.
o ease the op
agement featu
exposed via th

new CMW tr

c. Clients may
sources by sub

ring Log Ev
 order to fulf
a permanent

n added to the
es into size-b
eeded. At the s
a database (i.

age usage, pro
need to be ke

ect, for examp
stored for one

files, or send
ular architectu
other output d

s
protocol-spec

om particular
d using the A
amework whi
s helping to
ndles socket a
ed content to
d into an inte
sent off to the

e are three con
ing the RFC
ssages coming
d the last

h old legacy so
ple to add ne
e to other lo
is to accept a

ams using the

peration moni
ures such as b
he JMX [12] in

racing service

y then read m
bscribing to on

vents Perma
fil the requirem
storage two i

e system (see
based rotating
same time the
e Oracle or M
oject specific

ept have been
ple, data with
month only.

ding to a rem
ure of the libr
destinations.

cific and henc
remote source
Apache Cam
ch features a
reduce the

and thread op
o the user co
ernal common
e broker via T
nverters. The

C5424 syslog
g from the ne

one ensure
ources.
ew converters
og protocols.
also binary ob
e Log4J or S

itoring metric
blacklisting o
nterface.

.

messages from
ne or more top

anently
ment of storin
independent m
Figure 2). Th
files so disk

e DbWriter pu
MySQL). In or

 policies on h
put in place. F
warning and

mote host. If
rary facilitates

ce accepts log
es. Internally,

mel [10] open
very rich set
development

perations and
de. Here, the

n log message
CP.
first receives
format. The

ew CMWLog
es backward

s and thus to
. A concrete
bjects coming
SL4J [11] log

cs as well as
of log sources

m one or more
pics.

ng log events
modules have
he FileWriter

k space is not
ushes the data
rder to reduce
how long the
For the CMW
error severity

f
s

g
,

n
t
t
d
e
e

s
e
g
d

o
e
g
g

s
s

e

s
e
r
t
a
e
e

W
y

WEMAU001 Proceedings of ICALEPCS2011, Grenoble, France

652C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

The Log Viewer
To finally view log events online and in real-time a

graphical user interface (GUI) has been created. It
displays the loggers in a tree structure and allows fine
control of the desired levels. The messages are displayed
in a table using a different colour for each severity.

The interface can run as a standalone application or as
an integrated component within other GUIs. Moreover
when connected to an RDA server it can remotely change
the log level of the source easing on-the-fly problem
tracing.

Figure 3: Example of the CMW log event viewer.

In addition, data can be viewed offline via an oracle
driven web interface which provides sophisticated data
filtering and selection tools. In case of an incident like a
system or service crash this information can be very
useful for later analysis. Another example is comparing
trace messages produced by different sources at a given
time with messages from another time. This gives the
possibility to identify relationships between incidents.

PERFORMANCE TESTING
The new system has been deployed and tested in the

very early stages of development. The focus was put onto
the messaging broker as it handles most of the workload.
For this, an ActiveMQ 5.4 message broker was installed
on a 16 Core HP G6 server with 8GByte Memory. In
order to simulate future workload two producers where
set up on different machines sending in total 10.000 log
events per second at constant rate via 1000 connections
(TCP) to the broker. Each of these events contained a
payload of 500 Bytes.

On the reading side 15 Java client applications where
started each subscribing to a subset of the published data.
Because one message is multiplied by the number of
subscribers the effective outgoing message rate resulted in
30.000 messages per second. These performance numbers
are slightly above the estimated future load to allow a
better dimensioning of the system so bursts are handled
safely, as well.

This test setup ran for 48 hours without any problems
showing that ActiveMQ handles reliably the simulated
load.

EXTENDING TO OTHER FIELDS
Because of its flexibility and simple use the new system

has been investigated for transporting and storing
important deployment and configuration feedback
messages coming from kernel modules running on FECs.
This feedback channel is currently missing but highly
demanded. Developers have no means to verify the
correct installation or reconfiguration of those modules.

Therefore, feedback messages were tested to be sent to
the CMW tracing system and subsequently inserted into
the database. This was successful and confirmed that the
proposed system is a mature solution.

The same channel could possibly also be used for
normal Java or C++ programs services. Information about
the version, installation time and configuration could be
collected centrally in a database for further use like
viewing deployment history.

SUMMARY
The new tracing system fulfils all requirements and has

been tested for performance and stability. It is designed to
serve multiple reading applications for many equipment
or service experts without putting additional load onto the
log source and it offers to store the log events in a
database or size-based rotating files. Users have the
possibility to read messages online via a graphical user
interface which was integrated into existing operation and
diagnostic tools in the CERN control system. As data is
also stored in a database the usage of existing market
solutions for analysis is possible.

Because it allows being easily extended to other log
protocols like Log4J or SNMP it offers an interesting
solution to a larger field of activity.

REFERENCES
[1] CERN, www.cern.ch
[2] LynxOS, A real time operating system,

http://www.lynuxworks.com
[3] The syslog standard, IETF,

http://tools.ietf.org/html/rfc5424
[4] Chainsaw, Apache Log4J LogViewer,

http://logging.apache.org
[5] LogZilla, http://www.logzilla.pro
[6] Splunk, http://www.splunk.com
[7] STOMP, Streaming Text Oriented Messaging

Protocol, http://stomp.github.com
[8] Enterprise Messaging Solutions Technical

Evaluation, Lionel Cons, Massimo Paladin, CERN
[9] Apache Log4J, A Log Library for Java programs,

http://logging.apache.org/log4j
[10] Apache Camel, An enterprise routing framework,

http://camel.apache.org
[11] SLF4J, Simple Logging Facade for Java,

http://www.slf4j.org
[12] JMX, Java Management Extension, Oracle :

http://www.oracle.com
[13] ActiveMQ: http://activemq.apache.org

Proceedings of ICALEPCS2011, Grenoble, France WEMAU001

Distributed computing 653 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

