
OPTIMIZING INFRASTRUCTURE FOR SOFTWARE TESTING
USING VIRTUALIZATION

O. Khalid, A. Shaikh, B. Copy
CERN, Geneva, Switzerland

Abstract

Virtualization technology and cloud computing have

brought a paradigm shift in the way we utilize, deploy and

manage computer resources. They allow fast deployment

of multiple operating system as containers on physical ma-

chines which can be either discarded after use or check-

pointed for later re-deployment. At European Organization

for Nuclear Research (CERN), we have been using virtu-

alization technology to quickly setup virtual machines for

our developers with pre-configured software to enable them

to quickly test/deploy a new version of a software patch

for a given application. This paper reports both on the

techniques that have been used to setup a private cloud on

a commodity hardware and also presents the optimization

techniques we used to remove deployment specific perfor-

mance bottlenecks.

INTRODUCTION AND BACKGROUND

This paper reports our work to evaluate emerging soft-

ware technologies such as virtualization and cloud com-

puting for control system applications especially for small

teams to quickly setup test environments for development

and testing. Virtualization is a software layer that runs on

the underlying hardware, and enables system administra-

tors to run multiple operating systems as isolated applica-

tions or precisely speaking as virtual machines (VM). The

technology have been around since 60’s when IBM first

developed it to enable users to share mainframe for their

applications in an isolated way.

In recent years, virtualization technology have matured

to provide bare-metal performance for virtual machines

and have been increasingly deployed at large scale (from

clusters to data centers) using cloud computing technology

to optimize the utilization of the physical infrastructure in

an elastic and flexible manner. According to National Insti-

tute of Standards and Technology (NIST), Cloud Comput-

ing is “ a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, ap-

plications, and services) that can be rapidly provisioned

and released with minimal management effort or service

provider’s interaction” [1].

NIST identifies two key characteristics of cloud com-

puting that differentiates it from other ways of organiz-

ing and accessing computing infrastructures. First is on-
demand self service that enables a consumer/user to unilat-

erally provision computing capabilities on demand without

requiring human interaction with the service provider. Sec-

ond feature of cloud computing is resource pooling of com-

puting capabilities by the provider to serve multiple user-

communities from the same physical infrastructure creating

location independence where the user has no knowledge or

control over the provided resources. The service model we

have opted to deploy is Infrastructure as a Service (IaaS) to

provide our user community with a capability to provision

computing, storage and networking to run any operating

system or application.

The key motivation to opt for a private cloud has been

the way we use the infrastructure. Our user community

includes developers, testers and application deployers who

need to provision machines very quickly on-demand to test,

patch and validate a given configuration for CERN’s con-

trol system applications. Virtualized infrastructure along

side with cloud management software enabled our users to

request new machines on-demand and release them after

their testing was complete.

IMPLEMENTATION
The hardware we use for our experimentation is HP Pro-

liant 380 G4 machines with 8GB of memory, 500 GByte

of disk and connected with gigabit ethernet. Five servers

were running VMWare ESXi bare-metal hypervisor to pro-

vide virtualization capabilities [2]. We also evaluated Xen

hypervisor [3] with Eucalyptus [4] cloud but given our

requirements for Windows VMs, we opted for VMWare

ESXi. OpenNebula Professional (Pro) was used as cloud

front-end to manage ESXi nodes and to provide users with

an access portal [5]. Number of deployment configurations

were tested and their performance was benchmarked. The

configuration we tested for our experimentation are the fol-

lowing as show in Fig. 1:

• Central storage without front end (arch1 ): a shared

storage and OpenNebula Pro runs on two different

servers. All VM’s images reside on shared storage all

the time.

• Central storage with front end (arch2 ): a shared stor-

age, using network filesystem (NFS), shares the same

server with OpenNebula front end . All VM images

reside on shared storage all the time.

• Distributed storage remote copy (arch3 ): VM images

are deployed to each ESXi node at deployment time,

and copied using Secure Shell (SSH) protocol by front

end’s VMWare transfer driver.

• Distributed storage local copy (arch4): VM images

are managed by an image manager service which

downloads images pre-emptively on all ESXi nodes.

WEBHAUST02 Proceedings of ICALEPCS2011, Grenoble, France

622C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Infrastructure management and diagnostics



User
Portal

VMWare Transfer 
Script

Bare Metal
Hypervisor

Bare Metal
Hypervisor

Identity
Management

OpenNebula Frontend

ESXi Host ESXi Host

VM VM VM VM

Image Manager Image Manager

OpenStack
Image
Service

LDAP
Server

arch 4

Shared
Storage

arch1 
(without front end)

arch 2 
(with front end)

arch 3

Figure 1: The cloud deployment architecture based on OpenNebula, OpenStack and VMWare ESXi software.

Front end runs on a separate server and setup VM us-

ing locally cached images.

Each of the deployment configuration has its advantages

and disadvantages. arch1 and arch2 are using a shared

storage model where all VM’s are setup on a central stor-

age. When a VM request is sent to the front end, it clones

an existing template image and sets it up on the central stor-

age. Then it communicates the memory/networking con-

figuration to the ESXi server, and pointing the location of

the VM image. The advantage of these two architectural

configuration is that it simplifies the management of tem-

plate images as all of the virtual machine data is stored on

the central server. The disadvantage of this approach is that

incase of a disk failure on the central storage; all the VM’s

will loose data. And secondly, the system performance can

be seriously degraded if shared storage is not high perfor-

mance and doesn’t has high-bandwidth connectivity with

ESXi nodes. Central storage becomes the performance bot-

tleneck for these approaches.

arch3 and arch4 tries to overcome this shortcoming by

using all available diskspace on the ESXi servers. The chal-

lenge here is how to clone and maintain VM images at run

time and to refresh them when they get updated. arch3 re-

solves both of these challenges by copying the VM images

at request time to the target node (using VMWare transfer

script add-on from OpenNebula Pro software), and when

the VM is shut then the image is removed from the node.

For each new request, a new copy of the template image

is sent over the network to the target node. Despite its ad-

vantages, network bandwidth and ability of the ESXi nodes

to make copies of the template images becomes the bottle-

neck. arch4 is our optimization strategy where we imple-

ment an external image manager service that maintains and

synchronize a local copy of each template image on each

ESXi node using OpenStack’s Image and Registry service

called Glance [6]. This approach resolves both storage and

network bandwidth issues.

Finally, we empirically tested all architectures to answer

the following questions:

• How quickly the system can deploy a given number of

virtual machines?

• Which storage architecture (shared or distributed) will

deliver optimal performance?

• What will be average wait-time for deploying a virtual

machine?

Contextualization
One of the major challenge of deploying windows virtual

machines is contextualizing them for a specific environ-

ment at deployment time e.g. a windows virtual machine

getting a public IP address in CERN network and joining

the domain to allow CERN applications to be deployed on

it. This requires the VM to part of the public network at the

deployment time, and be able to join the domain.

At CERN, network access is controlled by pre-registered

list of authorized network interfaces. A list of virtual Ma-

chine Access Card (MAC) addresses are pre-registered in

the network database. A new VM is deployed with one

of the available MAC address. Once its get into a running

stage, it gets connected to the network.

Next stage is to configure the machine to acquire the new

machine name corresponding to the virtual MAC address.

It’s simpler to configure for Linux VM’s as compared to

Microsoft Windows XP VMs. For both we have adopted

similar approaches to automate the contextualization pro-

cess. Each VM is configured to launch a script at boot time

that gets its MAC address and compare against a list of reg-

istered names (either using a local file or remotely access

file). The matching name is updated in the VM and it’s

rebooted.

For Windows VM, as shown in Fig. 2, before the reboot

there is an additional stage of reseting virtual machine’s se-

curity ID as required by the domain controller and is linked

•

Proceedings of ICALEPCS2011, Grenoble, France WEBHAUST02

Infrastructure management and diagnostics 623 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Base Image

VM Instance
«requirement»
name: machineName
domain: Domain.org

setup
Unconfigured
hardware: virtualMac
IP: publicIP
name: someName
domain: Domain.org

SysPrep 
phase

reboot

Deployed

cloned

Figure 2: State diagram of a VM starting with the base

image, and the stages it goes through to get to running state.

to the active directory entry. If the same security ID is used

for all windows VM’s, then they can’t join the domain.

This process is delegated to Microsoft’s System Prepara-

tion (SysPrep) tool which configures the VM using a local

configuration file. Once this configuration is completed;

the machine is rebooted and then is available to end-user

via the remote desktop connection.

RESULTS
All four different architectures were evaluated for four

different deployment scenarios. Each scenario was run

three times and the results were averaged and are presented

in this section. Any computing infrastructure when used

by multiple users goes under different cycles of demand

which results in reduced supply of available resources on

the infrastructure to deliver optimal service quality.

We were particularly interested in following deployment

scenarios where 10 virtual machines were deployed:

• Single Burst (SB): All virtual machines are sent in a

burst mode but restricted to one server only. This is

the most resource-intensive request.

• Multi Burst (MB): All virtual machines were sent in a

burst mode to multiple servers.

• Single Interval (SI): All virtual machines were sent

after an interval of 3 mins to one server only.

• Multi Interval (MI): All virtual machines were sent

after an interval of 3 mins to multiple servers. This is

the least resource-intensive request.

The overall deployment times, as shown in Fig. 3, for

arch1 and arch2 are very close to each other for all four

test configuration. Both of these architectures were using

a NFS based shared storage where all VM images were

cloned on a storage server, and only VM setup commands

were sent to the ESXi nodes with image pointers. All ten

VM’s got deployed within 75 mins of request initialization.

This is the lower bound of the system. Where as arch3 is

using distributed storage but every time a VM request is

made, a new image is transferred over SSH which is a very

slow process and can take up more then 200 mins for some

configurations. arch4 is most interesting that clearly shows

the optimization we implemented for auto-deployment of

VM images prior to requests in the background which re-

sults in VM being deployed within 10mins.

Figure 4 shows that cumulative wait time for VM de-

ployment is fairly stable for arch1 and arch2. arch3 is

taking the highest amount of time and arch4 least. Sim-

ilar pattern of wait time is observable in Fig. 5 and 6

as well. For MI configuration which is least resource in-

tensive, arch2 and arch3 have a similar wait time which

shows that both architectures are suitable for small-scale

cloud deployments that a VM gets deployed within 30

mins. The only issue is central storage being a single-point

of failure incase a hardware fault occurs. arch4 keeps on

out perfoming all other configuration, and hence was se-

lected as the target deployment on our private cloud.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

ARCH-1

ARCH-2

ARCH-3

ARCH-4

D
ep

lo
ym

en
t T

im
e 

(M
in

ut
es

)

BASELINE
SINGLE-INTERVAL

SINGLE-BURST
MULTI-INTERVAL

MULTI-BURST

Figure 3: Aggregated total time taken to deploy all VM’s

in each test configuration for all architectures.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

VM
01

VM
02

VM
03

VM
04

VM
05

VM
06

VM
07

VM
08

VM
09

VM
10

D
ep

lo
ym

en
t T

im
e 

(M
in

ut
es

)

BASELINE-AVG
ARCH-1

ARCH-2
ARCH-3

ARCH-4

Figure 4: Evolution of deployment time for single-burst

(SB) configuration.

WEBHAUST02 Proceedings of ICALEPCS2011, Grenoble, France

624C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Infrastructure management and diagnostics



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

VM
01

VM
02

VM
03

VM
04

VM
05

VM
06

VM
07

VM
08

VM
09

VM
10

D
ep

lo
ym

en
t T

im
e 

(m
in

ut
es

)

BASELINE-AVG
ARCH-1

ARCH-2
ARCH-3

ARCH-4

Figure 5: Evolution of deployment time for multi-burst

(MB) configuration.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

VM
01

VM
02

VM
03

VM
04

VM
05

VM
06

VM
07

VM
08

VM
09

VM
10

D
ep

lo
ym

en
t T

im
e 

(M
in

ut
es

)

BASELINE-AVG
ARCH-1

ARCH-2
ARCH-3

ARCH-4

Figure 6: Evolution of deployment time for single-interval

(SI) configuration.

CONCLUSION
Virtualization technology and the emerging cloud com-

puting platform provides innovative way to utilize physical

infrastructure in an elastic and flexible manner. It enables

system administrators to meet various cycles of infrastruc-

ture demand when multiple user communities access the

same hardware. Without cloud computing, it requires au-

tomated system administration tools to provide uniform

access to storage, CPU, network and memory of a clus-

ter of machines. Whereas, present day cloud computing

management systems allows system administrators to not

only virtualize their infrastructure which enables to deploy

more applications/machines (virtual) on the shared physi-

cal hardware but also reduces the application deployment

lifecycle.

In this paper, we have attempted to evaluate small scale

private cloud infrastructure (up to 10 hardware servers) for

software development teams so that they could quickly and

on-demand request machine resources using available vir-

tual machine technology. Our study have highlighted that

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

VM
01

VM
02

VM
03

VM
04

VM
05

VM
06

VM
07

VM
08

VM
09

VM
10

D
ep

lo
ym

en
t T

im
e 

(m
in

ut
es

)

BASELINE-AVG
ARCH-1

ARCH-2
ARCH-3

ARCH-4

Figure 7: Evolution of deployment time for multi-interval

(MI) configuration.

for optimal performance; a high-performance shared stor-

age SAN and high-network bandwidth is preferable but this

is often not possible for small scale deployments due to

financial constraints. The experiments conducted in this

study have indicated that a small scale private cloud is a

feasible option without costly SAN or high-speed network-

ing gear.

The results have also shown that distributed storage us-

ing locally cached images when managed using a central-

ized cloud platform (in our study we used OpenNebula

Pro) is a practical option to setup local clouds where users

can setup their virtual machines on demand within 15mins

(from request to machine boot up) while keeping the cost

of the underlying infrastructure low.

REFERENCES
[1] P. Mell and T. Grance, “The NIST definition of cloud com-

puting”, Technical report, National Institute of Standards and

Technology, U.S. Department of Commerce, January, 2011.

[2] VMWare, “Migrating to VMware ESXi”, Technical Resource
Center, 2011. http://www.vmware.com/resources/
techresources/10183

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, Steven, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and

the art of virtualization”, Proceedings of the nineteenth ACM
symposium on Operating systems principles, SOSP’03, NY,

USA, 2003.

[4] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. So-

man, L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-

Source Cloud-Computing System”, Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid, CCGRID’09, Washington, DC, USA, 2009.

[5] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster,

“Virtual Infrastructure Management in Private and Hybrid

Clouds”, IEEE Internet Computing, vol. 13, no. 5, pp. 14-22,

Sep./Oct. 2009.

[6] OpenStack, “OpenStack: An Overview”, Technical
Paper, 2011. http://openstack.org/downloads/
openstack-overview-datasheet.pdf

Proceedings of ICALEPCS2011, Grenoble, France WEBHAUST02

Infrastructure management and diagnostics 625 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


