
A PLATFORM INDEPENDENT FRAMEWORK FOR STATECHARTS
CODE GENERATION

L. Andolfato, G. Chiozzi, ESO, Munich, Germany
N. Migliorini, ENDIF, Ferrara, Italy

C. Morales, UTFSM, Valparaiso, Chile.

Abstract
Control systems for telescopes and their instruments are

reactive systems very well suited to be modelled using
Statecharts formalism. The World Wide Web Consortium
is working on a new standard called SCXML that
specifies XML notation to describe Statecharts and
provides a well defined operational semantic for run-time
interpretation of the SCXML models. This paper presents
a generic application framework for reactive non real-
time systems based on interpreted Statecharts. The
framework consists of a model to text transformation tool
and an SCXML interpreter. The tool generates from UML
state machine models the SCXML representation of the
state machines as well as the application skeletons for the
supported software platforms. An abstraction layer
propagates the events from the middleware to the
SCXML interpreter facilitating the support for different
software platforms. This project benefits from the positive
experience gained in several years of development of
coordination and monitoring applications for the
telescope control software domain using Model Driven
Development technologies.

INTRODUCTION
Statecharts [1] have been successfully applied at the

European Southern Observatory (ESO) for modelling
reactive systems [2] such as telescopes and their
instruments. Currently all ESO software platforms (the
Very Large Telescope (VLT) [10], the Alma Common
Software (ACS) [11], and the Standard Platform for
Adaptive optics Real Time Applications (SPARTA) [12]),
provide different application frameworks based on
Statecharts to build monitoring and control applications.
For the VLT platform a code generation framework
integrated with Rational ROSE and MagicDraw has been
developed and successfully employed to create more than
30 C++ control applications for different VLT/VLTI
projects [6]. The SPARTA platform offers a C++ library to
build Statecharts based applications. The ACS platform
provides a tool to transform Statecharts into Java
applications using Xpand template language [8].

Table 1: ESO Platforms (for non real-time applications)

Platform OS Languages Middleware

VLT Linux C++, TCL/TK CCS

ACS Linux C++, Java, Python CORBA

SPARTA Linux C++ CORBA, DDS

These tools, although implementing the same
formalism, support different sets of Statecharts features
and, even for the commonly supported features, their
operational semantics is often different due to lack of
standard semantics for Statecharts [4]. In addition the
UML models are not exchangeable between different
generators because they are built using different UML
profiles. Finally, for all three tools the generated/created
source code depends directly on the state machine model
and any change in the state machine logic requires a
recompilation of the code.

In order to solve the above mentioned problems, reduce
maintenance costs, and promote model reusability on
different platforms (Table 1), the Generic State Machine
Engine (GSME) project started at ESO with the objective
of building a platform independent code generation tool
from Statecharts called COMODO.

REQUIREMENTS
The requirements for COMODO were derived from the

existing tools and can be summarized in:

 Support for the main Statecharts features
 Support for Statecharts inheritance
 Support for graphical and textual representation of

Statecharts
 Support for multiple software platforms
 Support for Statecharts interpretation

Looking at the existing telescope control applications

based on state machines, the most used Statecharts
features are: composite and orthogonal states, shallow and
deep history state, guards, entry/exit/on-transition actions,
do-activities, and initial/final pseudo-states.

In addition to these standard features a requirement on
model inheritance has been introduced to have the
possibility of creating models that extend existing
Statecharts (for example by adding states and/or
transitions). Note that only “extension inheritance” is
required, while “refinement inheritance” is not considered
[3].

Statecharts is a graphical formalism and since it is part
of the UML standard, any UML tool provides the
possibility to create, edit, and visualize Statecharts models
graphically. However, textual representation is useful for
model comparison as well as for scenarios where UML
modelling tools are not available. Therefore both
graphical and textual Statecharts notations are mandatory
for this project.

WEAAULT03 Proceedings of ICALEPCS2011, Grenoble, France

614C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

At last, the ability to change at run-time the behaviour
of control applications becomes an important feature for:

 Reducing the model complexity by splitting a large

model into several smaller ones. Consider for
example the case where a control software
application has to support different type of HW
components that can be modified at run-time. One
possible implementation is to include all HW
configurations in one large Statecharts model. A
second solution is to have one model per HW
configuration and load the correct model at run-time.
The latter is usually a better choice in terms of
maintainability since smaller Statecharts models are
easier to understand.

 Reducing the time needed to apply changes to the
state machine logic. For example, during
testing/deployment of an instrument, a large amount
of time is dedicated to tuning the calibration
procedures (i.e. to define in which order to move the
hardware and acquire the data). Changing the
behaviour of the calibration procedure without the
need of recompiling speeds up considerably the
testing/deployment phases.

Of course, interpreted Statecharts do not provide the same
performances of compiled Statecharts and often require
more memory. However, our target applications are
monitoring and control applications running on
workstations that do not require real-time reaction time.

STATECHART XML
COMODO is based on a StateChart XML (SCXML)

engine and a model to text (M2T) transformation tool.
Depending on the given software platform configuration,
it transforms UML State Machine models into SCXML
models and platform specific artefacts such as the
application code needed to integrate the SCXML engine
and the manually developed code (Figure 1).

SCXML [5] is a standard introduced by the World
Wide Web Consortium (W3C) to describe Statecharts.
The syntax is based on XML textual notation, and the
operational semantics is well defined via pseudo-code.
Furthermore, the SCXML language has been designed to
be interpreted so that the dynamic behaviour of an
SCXML application can be modified at run-time.

SCXML supports all standard Statecharts features
required by the project. Moreover, it offers a possible
implementation of the Statecharts inheritance via the
XML inclusion mechanism.

The support for different ESO platforms is achieved by
providing C++ and Java SCXML engine libraries that can
be compiled on each of these platforms.

COMODO PROFILE FOR UML
A COMODO application is modelled with a subset of

UML which consists of the state machine to specify its
behaviour and some elements to describe the interface

and its deployment. Applying domain specific stereotypes
to the model elements, allows to customize and re-use the
model for the different supported software platforms.
Stereotypes were collected using the UML profile
mechanism in the COMODO profile [13].

Figure 1: COMODO data flow: in green platform
independent activities and artefacts, in blue the platform
dependent ones.

MODEL TO TEXT TRANSFORMATIONS
The process to transform a UML model into the target

application for a given platform consists of two parts:

 Transformation from UML model to SCXML
 Transformation from UML model to platform

specific artefacts

The transformations are based on the mapping between
the source model element and the generated artefact.

UML to SCXML Mapping
In order to transform UML Statecharts to SCXML, a

mapping between UML model elements and SCXML
syntax notation has been defined (Table 2).

The SCXML model is platform independent and even
the implementation of entry/exit/on-transition actions and
do-activities can be embedded in the model using
SCXML scripting action language (or another scripting
language supported by the target platform). However our
target applications are normally developed in C++ or Java
and therefore the interpretation has been limited to the
state machine logic while actions and activities are
compiled. This approach allows changing the state
machine logic at run-time while leaving the advantages of
compiled languages for the implementation of actions and
activities.

Proceedings of ICALEPCS2011, Grenoble, France WEAAULT03

Software technology evolution 615 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Table 2: UML to SCXML Mapping

UML SCXML

State Machine <scxml>

State <state>

Composite state <state> (the initial sub-state
must be defined)

Region <parallel> (the initial sub-
state must be defined)

Initial pseudo-state <initial> or initial attribute of
<state>

Final pseudo-state <final>

Entry / Exit action <onentry> / <onexit>

Transition (trigger
[guardExpression] /
action)

<transition event=”trigger”
guard=”guardExpression”>

Internal transition <transition> with no target
specified

Deep History <history type=”deep”>

Shallow History <history type=”shallow”>

Activities <invoke>

Actions Custom actions

Event (signal) String

Timer Event Send command with timeout

UML to Platform Specific Artefacts Mapping
The platform specific artefacts generated from the

UML model are:
 Action and Activities stubs (generated only once the

very first time)
 The code to handle the platform specific events and

propagate them to the SCXML engine
 All artefacts to build the generated application
 Some basic test code used by the automatic test

infrastructure provided by the software platforms
Each action and activity defined in the Statecharts

model is mapped to a C++/Java class. Activities are
started in separate threads while actions are executed via
method invocation. It is foreseen to have also an action-
to-method mapping (i.e. mapping of a group of actions to
methods of a class) to avoid proliferation of classes,
facilitate data sharing among actions, and reduce
compilation time.

SCXML defines events as simple strings therefore a
translation of platform specific events to the SCXML
events has to be specified. For example a CORBA call
has to be mapped to the corresponding SCXML event
string and injected in the SCXML engine. Table 3 shows
different types of events supported by the software
platforms and their representation in UML.

Table 3: Events Mapping

UML VLT ACS SPARTA

Signal Command/Reply
callback

CORBA
method

CORBA
method

Time event VLT Timer
callback

ACS
Timer

 Timer

Signal
<<attribute>>

Database change
notification
callback

CORBA
attribute
change

CORBA
attribute
change

Signal
<<fileio>>

UNIX file I/O
event.

UNIX
file I/O
event.

UNIX
file I/O
event.

Signal
<<internal>>

Internal event Internal
event

Internal
event

IMPLEMENTATION
The UML to SCXML and UML to platform specific

artefacts mappings are implemented using EMF [7] and
Xpand tool set [8] which include a workflow executor
(MWE), the Check constraint language, the Xpand
template language, and the Xtend language. The code
generator structure is shown in Figure 2.

The MWE workflow is used to drive different steps of
the model to text transformations. Four workflows have
been created: one per platform and one for the SCXML
transformation. The steps of the workflow are:
 Load the UML Profile
 Load the model
 Validate the model by applying Check rules
 Run Xpand templates to generate artefacts
The step validating the model is important since

normally UML tools do not impose any rule in the
specification of Statecharts while SCXML, being an
operational specification, requires well formed models.
For this reason a set of Check rules have been written to
verify that the model complies with SCXML
specifications (for example that the initial state in
composite states is always specified or that a transition
from the history state is provided).

After the model has been validated, Xpand templates
are executed to generate the artefacts defined in the
mapping. A set of functions have been developed in
Xtend language to help navigating the model to retrieve
the model elements properties.

Note that veto strategy or round-trip code generation is
not supported by the tool. Customization of the generated
code is done via subclassing. Implementation of actions
and activities is therefore performed by inheritance from
abstract classes generated by the tool.

GENERATED APPLICATION
The applications generated by COMODO use an

SCXML engine to process incoming events and trigger
transitions.

WEAAULT03 Proceedings of ICALEPCS2011, Grenoble, France

616C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Apache Commons SCXML engine [9] has been selected
to be the SCXML engine for Java applications. A C++
simplified prototype of the Apache Commons SCXML
engine is being developed in house for the C++
applications.

Events are propagated to the SCXML engine via
platform specific adapter classes generated by the tool.
Actions and activities are executed by the SCXML engine
using invoker classes, also provided by the tool. Access to
platform services such as logging is provided to actions
and activities via injection at creation time.

CONCLUSIONS
In this paper a cross-platform code generator tool from

Statecharts was presented. The tool relies on the SCXML
notation which provides a standard syntax and semantic
specification to describe and execute Statecharts. Since
SCXML models are interpreted, generated applications
can change behaviour by modifying the state machine
logic at run-time without the need for recompilation,
reducing therefore the development time.

A UML to SCXML mapping is proposed to benefit
from the graphical nature of Statecharts models.

The project is still at prototype level but it provides a
complete UML to SCXML transformation and the
generation of Java applications for the ACS platform. The
next important step is to develop a C++ SCXML engine
that is needed to support the other two software platforms.

REFERENCES
[1] D. Harel, “Statecharts: A visual formalism for

complex systems”, Journal Science of Computer
Programming, vol. 8, issue 3, pp. 231-274 (1987).

[2] D. Harel, M. Politi, “Modeling Reactive Systems
with Statecharts”, McGraw-Hill, (1998).

[3] M. Stumptner, et all, “Behavior Consistent
Inheritance with UML Statecharts”, Proc.
ECOOP’04, p. 59 (2004).

[4] M. L. Crane, J Dingel, “UML vs. classical vs.
rhapsody statecharts: not all models are created
equal”, Software and Systems Modeling, vol. 6,
issue 4, pp. 415-435 (2007).

[5] “State Chart XML (SCXML): State Machine
Notation for Control Abstraction”, W3C Working
Draft, April 2011, (2011).

[6] L. Andolfato, R. Karban, “Workstation Software
Framework”, Proc. SPIE 2008, vol. 7019, (2008).

[7] D. Steinberg et al., “EMF: Eclipse Modeling
Framework”, 2nd Edition, Addison-Wesley
Professional, (2008).

[8] B. Klatt, “Xpand: A Closer Look at the model2text
Tranformation Language” 12th European
Conference on Software Maintenance and
Reengineering, (2008).

[9] Apache Commons SCXML;
http://commons.apache.org/scxml/.

[10] K. Wirenstrand, “VLT telescope control software:
status, development, and lessons learned”, Proc.
SPIE 2003, vol. 4837, p. 965 (2003).

[11] G. Chiozzi et all, “ALMA Common Software
(ACS), status and development”, Proc. ICALEPCS
2009, (2009).

[12] E. Fedrigo et all, “SPARTA: the ESO standard
platform for adaptive optics real time
applications”, Proc. SPIE 2006, vol. 6272, (2006).

[13] G. Chiozzi et all, “A UML profile for code
generation of component based distributed
systems”, this conference, (2011).

Figure 2: Code generator structure.

Proceedings of ICALEPCS2011, Grenoble, France WEAAULT03

Software technology evolution 617 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

