
WEB-BASED EXECUTION OF GRAPHICAL WORKFLOWS: A MODULAR
PLATFORM FOR MULTIFUNTIONAL SCIENTIFIC PROCESS

AUTOMATION

E. De Ley, D. Jacobs, iSencia Belgium, Ghent, Belgium
M.Ounsy, Synchrotron Soleil, France

Abstract
The Passerelle process automation suite offers a

fundamentally modular solution platform, based on a
layered integration of several best-of-breed technologies.
It has been successfully applied by Synchrotron Soleil as
the sequencer for data acquisition and control processes
on its beamlines, integrated with TANGO as a control bus
and GlobalScreenTM as the SCADA package. Since last
year it is being used as the graphical workflow component
for the development of an eclipse-based Data Analysis
Work Bench, at ESRF.

The top layer of Passerelle exposes an actor-based
development paradigm, based on the Ptolemy framework
(UC Berkeley). Actors provide explicit reusability and
strong decoupling, combined with an inherently
concurrent execution model. Actor libraries exist for
TANGO integration, web-services, database operations,
flow control, rules-based analysis, mathematical
calculations, launching external scripts etc.

Passerelle's internal architecture is based on OSGi, the
major Java framework for modular service-based
applications. A large set of modules exist that can be
recombined as desired to obtain different features and
deployment models. Besides desktop versions of the
Passerelle workflow workbench, there is also the
Passerelle Manager. It is a secured web application
including a graphical editor, for centralized design,
execution, management and monitoring of process flows,
integrating standard Java Enterprise services with OSGi.

We will present the internal technical architecture,
some interesting application cases and the lessons learnt.

INTRODUCING PASSERELLE
Passerelle[1] is a component-based solution assembly

suite, developed and distributed by iSencia Belgium since
2002. It is based on an integration and on extensions of
Ptolemy II[2] (Univ. Berkeley), OSGi/Equinox & other
OS libraries. Passerelle comes with an execution engine,
enhanced actor development API, reusable actor libraries
and several graphical model editors.

Passerelle is already used for several years in
“production-mode” at different sites. Two important
reference sites are :

• Belgacom, the main Belgian telecommunication
provider, where it is used to automate diagnosis
and repair processes for the customer help-desk
operators, and for field technicians.

• Synchrotron Soleil in France, where Passerelle is
used as sequencing engine for beamline
experiments.

Since last year, the core Passerelle modules are
provided in open source, together with an eclipse-based
graphical editor, at the eclipse labs hosted by Google.

ACTOR-BASED DEVELOPMENT
Passerelle inherits many core concepts from Ptolemy II,

the main ones being :
• actor-based development
• using graphical hierarchical models for defining

executable solution assemblies
• separation between the “topology” of the actor

assemblies and their runtime semantics by
picking alternative Director components

Passerelle/Ptolemy actors and sequences are a direct
implementation of the well-documented pipes-and-filters
architecture pattern, see for example [3]. Such an
architecture promotes component-based solution designs
with strong decoupling. Each actor in a complete process
has a single responsibility that must be fulfilled based on
data in messages received on the actor's input port(s).
Results must be sent via the actor's output port(s).

Runtime semantics, or “models of computation”, are
determined through the usage of one of the “domains”
provided by Ptolemy II. Passerelle is based on the
Process Networks domain, which is a good basis for data-
flow and process engines that internally require
asynchronous behaviour and transparent actor-based
concurrency.

Both actors and directors are implemented as Java
classes, building on a rich API with base classes and
utilities.

All of this results in a system that promotes designing
and developing with reusability in mind. Actors are the
basic level of reusable components and can be picked
from actor libraries. There are actors for all basic flow
control elements (branching, filtering, routing, loops,
error handlers,...), but also libraries of domain-specific
actors like Tango device control, database querying and
updating etc.

Sub-processes can be easily stored in the library by
end-users and can be reused between models.

Additionally, the clear split between actor development,
solution assembly and execution environments supports
different roles in solution delivery and maintenance for
designers, developers, users and administrators.

TUAAULT04 Proceedings of ICALEPCS2011, Grenoble, France

540C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

ADVANCED CONCURRENCY FEATURES
Automation of non-trivial processes quickly confronts a

solution developer with complex technical requirements.
How can we control many simultaneous activities? How
to assign system resources for a combination of long-
running tasks and fast tasks? How to cater for peak loads
in an optimal way?

The combination of asynchronous, event-driven
internal processing, with the transparent concurrency that
comes for free with the actor model means that neither the
actor developer, nor the model designer, need to care too
much about such technical complexities. Passerelle
processes are automatically concurrent. Each actor can
perform its work in an own thread that is managed
internally by the engine. Each interaction between actors
is buffered, so temporary overloads of an actor do not
impact the others.

The philosophy behind the Passerelle engine, which is
made possible thanks to the core Ptolemy design
concepts, is that both an actor developer and a model
designer should just focus on the desired functionalities.
The complexities to ensure an optimal execution are
hidden, and can be maintained and improved
independently.

APPLICATION DOMAINS FOR
SYNCHROTRONS

Passerelle actors and sequences can be used to
automate all kinds of processes. By combining the right
execution model with the right set of actors, the same
process automation platform can handle e.g. :

• sequences for data acquisition and control
• workflows for data analysis
• autonomous monitoring and alarming
• scheduling batch processes
• …

A COMPLETELY MODULAR AND
DYNAMIC PLATFORM

The Passerelle engine has been integrated in a complete
platform for Java enterprise solutions with rich browser-
based user interfaces. This has been designed from the
ground up as a fundamentally modular system, through
the usage of OSGi. This helps in several respects :

• strict control of intermodular dependencies with
versioning

• OSGi bundles provide active modules with well-
defined life-cycles

• support for dynamically updating/extending
operational systems without downtime

• a very clean and performant service-based
architecture

Just as for actors, OSGi promotes a model where each
module has a limited responsibility, with a clean public
interface and low coupling.

The Sherpabeans Java web framework integrates the
following core technologies within an OSGi architecture :

• Apache Wicket for the web view layer
• JPA, Hibernate, eclipse link for persistence
• many smaller libraries

SherpaBeans itself is a collection of OSGi bundles that
can be recombined at will. Some important modules are :

• scheduler for background jobs
• role-based security
• asset repository
• publish/subscribe notifications
• OSGi bundle upload and lifecycle management
• ...

This architecture makes it possible to deliver a basic
Passerelle Manager platform with all core services,
including a web-based graphical model editor (see Figure
1 below), an execution engine, some standard actor
libraries and a complete web-based administration
interface.

This system can then be extended in different ways by
uploading extra modules as OSGi bundles (e.g. with new
actors or new management features), designing and
running new sequences etc.

ACTOR DEVELOPMENT WITH OSGI
In cases where the automated processes must be

operational 24x7, even a short interruption to stop a
sequence, and start a modified version, is problematic.
Thanks to the dynamism offered by OSGi, many types of
adaptations can be done without downtime.

A typical example is upgrading the logic of an actor
implementation, e.g. for a bug fix or adapting to upgraded
backend APIs etc.

To prepare for easy and dynamic maintainability, it is
good practice to design actors in 2 layers :

• a service layer, containing the real logic behind a
standardized task-based API that can be used by
an actor

• a simplified actor, that basically feeds received
data to the right service, collects its results and
generates output messages from them

This results in actors that act as “binding” between a
control layer (defined by the process model) and the
service layer.

In an OSGi-based environment, each service can be
offered by a dedicated bundle. When the bundle becomes
active, the service is registered and is available for usage.
When the bundle is deactivated or uninstalled, the service
disappears. On the “client”-side, the actor can lookup the
available service implementation(s), is notified about any
changes in the status of the service, and can even pick the
best one when multiple implementation versions would be
available.

Proceedings of ICALEPCS2011, Grenoble, France TUAAULT04

Software technology evolution 541 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 1: Screenshot from the web-based model editor in Passerelle Manager.

THE RESULT : EXTREME FLEXIBILITY
FOR PROCESS AUTOMATION,

WITHOUT DOWNTIME
Via the Passerelle Manager's web UI, it is possible to

manage the lifecycle of each service bundle, to upload
new versions etc.

The end result is a fully secured and dynamic platform
to design new or updated processes via the browser, to
upload new or updated actor and service implementations,
to schedule process execution, consult execution traces
etc.

COMBINING MODULES IN DIFFERENT
PACKAGING OPTIONS

Through picking and recombining subsets of the
available OSGi bundles, several solution packages can be
obtained, with almost complete reuse of the core
Passerelle bundles.

By using OSGi's service-based architecture, with a
clear split between interface bundles and implementation
bundles, it is also possible to provide several replaceable
implementations of core service interfaces. For example,
the asset repository has two implementations :

• the “enterprise” version, with persistence in a
relational database, to be used inside the
Passerelle Manager

• a simple file-based version, to be used with
desktop workbench/IDE

Besides the Passerelle Manager, the following packages
are possible :

• a standalone eclipse based Passerelle workbench

• the Passerelle eclipse workbench as plugins in
larger workbench undertakings, like ESRF's Data
Analysis WorkBench (DAWB) [4].

• an OSGi version with a Swing HMI
(Figure 2 below)

• a plain Java-main Swing HMI, as OSGi bundles
are finally also useable as plain jars...

EXAMPLE : ACTORS FOR DATA
ACQUISITION VIA WEB SERVICES

In many enterprise environments, both scientific or
non-scientific, the usage of web services is common, e.g.
via SOAP or REST. Automated processes often include
steps to obtain data from other software systems (often
denoted as “backend systems”) via such web services.

The preparation of a web-service request, and the
interpretation of the received response typically involves
tedious XML generation/parsing work. In many cases it's
preferred to use frameworks like Apache Axis, JAXB etc
to generate a Java binding.

In such a context, it is good practice to create an OSGi
bundle for each required backend service. This bundle
encapsulates the following responsibilities :

• accept request data from the client/actor
• prepare the outgoing request to the backend
• send the request, potentially with some safety

measures to prevent overloading the backend
• collect the response or errors
• store the results and timing information etc in a

database
• return the results to the client/actor

The actor layer becomes quite simple does not need to
care about web service protocols, data persistence etc.

Such a design improves testability and maintainability.

TUAAULT04 Proceedings of ICALEPCS2011, Grenoble, France

542C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Software technology evolution

Figure 2: Screenshot from the Swing-based HMI/editor

When the backend needs to change its web service, or
the protocol changes for any other reason, or extra
technical features like timeout management etc need to be
added, this can all be done via an upgrade of the service
bundle(s), without requiring a downtime.

CONCLUSIONS
Through a fundamental modular and componentized

approach, it is possible to obtain advanced platforms for
process automation.

By rigorously following good service-based design
approaches in the context of an OSGi-based platform, a
generic platform providing a complete tools set for
designing, running and maintaining process models,

consulting execution traces etc, becomes the starting point
for a robust system that can be extended and updated
without requiring downtime.

REFERENCES
[1] Passerelle project information :

http://www.isencia.be/services/passerelle and
http://code.google.com/a/eclipselabs.org/p/passerelle/

[2] Ptolemy II project information :
http://ptolemy.berkeley.edu/ptolemyII/

[3] F. Buschmann et al., Pattern-oriented software architecture
– Volume 1

[4] ESRF's DAWB project information :
http://www.dawb.org

.

Proceedings of ICALEPCS2011, Grenoble, France TUAAULT04

Software technology evolution 543 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

