
THE FAIR TIMING MASTER: A DISCUSSION OF PERFORMANCE
 REQUIREMENTS AND ARCHITICTURES FOR A HIGH-PRECISION

M. Kreider, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
Hochschule Darmstadt, Darmstadt, Germany

Glyndŵr University, Wrexham, UK

Abstract

Production chains in a particle accelerator are complex
structures with many interdependencies and multiple paths
to consider. This ranges from system initialisation and syn-
chronisation of numerous machines to interlock handling
and appropriate contingency measures like beam dump sce-
narios. The FAIR facility will employ WhiteRabbit, a time
based system which delivers an instruction and a corre-
sponding execution time to a machine. In order to meet
the deadlines in any given production chain, instructions
need to be sent out ahead of time. For this purpose, code
execution and message delivery times need to be known
in advance. The FAIR Timing Master needs to be reliably
capable of satisfying these timing requirements as well as
being fault tolerant. Event sequences of recorded produc-
tion chains indicate that low reaction times to internal and
external events and fast, parallel execution are required.
This suggests a slim architecture, especially devised for
this purpose. Using the thread model of an OS or other high
level programs on a generic CPU would be counterproduc-
tive when trying to achieve deterministic processing times.
This paper deals with the analysis of said requirements as
well as a comparison of known processor and virtual ma-
chine architectures and the possibilities of parallelisation in
programmable hardware. In addition, existing proposals at
GSI will be checked against these findings. The final goal
will be to determine the best instruction set for modeling
any given production chain and devising a suitable archi-
tecture to execute these models.

INTRODUCTION

In an accelerator, machines need to execute their ac-
tions at predefined moment, as part of an overall master
plan. Magnets need to be run through current ramps, kicker
assemblies need to be triggered at the right moment for
beam transfer between accelerator rings, and similar mat-
ters. Most accelerators use some form of middle ware to
convert physical scenarios into the necessary machine com-
mands, like the production of a beam with a given energy
and isotope. In theory, it would be possible to compute all
necessary instructions and their times of execution in ad-
vance and then just go with this program. For such a sce-
nario one would only need a very simple timing control,
executing this precomputed value table.

However, more flexibility is needed in a real world sce-
nario, since circumstances can change. From simply wait-
ing for a machine to report ready status over changing de-

mands from operators up to occurring interlocks and en-
gaging machine protection circuits, all of these require
changes to the planned scenario. Given a certain deadline,
satisfying the timing requirements depends on several fac-
tors: The time to detect the condition and compose the mes-
sage in the data master, transmission time through the dis-
tribution network, composed of switch traversal and time
on the line, and decoding time in the endpoint.

TIMING CONSTRAINTS

Figure 1: Reaction Times of CERN Interlock systems.1

The system timing constraints are to be deduced from
hardware parameters like the minimum possible reaction
time of a magnets power supply or the synchronisation re-
quirements with RF systems and kicker assemblies as well
as interlock systems, subdivided into beam protection, ma-
chine protection access control and operating. For all ac-
celerators, interlock handling comes in several speed cate-
gories, depending on the kind of system to be monitored.
from fastest to slowest these are: beam diagnostic equip-
ment, magnet power supplies, vacuum system, temperature
control, access control and finally operating.

Figure 1 shows a comparison between various systems
employed at CERN’s LHC. Interlock deadlines are spread
here from 40µs over the low millisecond range up to several
hundred milliseconds [2].

While many of these seem to require comparatively slow
reaction achievable with a Real Time Operating System
(RTOS), the fastest reaction times possible are always de-
sired. The reason is, the quicker the system reaction time,

1B.Todd, A Beam Interlock System for CERN High Energy Accelera-
tors

TIMING SYSTEM

THCHMUST06 Proceedings of ICALEPCS2011, Grenoble, France

1256C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

the less beam dump scenarios are to be expected. This
means less ionisation of beam guides and Faraday cups,
reducing radiation emmanating from the facility and there-
fore cooldown time in the beginning of maintenance shut-
downs. It also causes less damage to beam diagnostic
equipment. Availability for hands-on-maintenance goes
with an overall decrease in maintenance time and cost.
The most critical machine protection system shown here
is the quench protection system for superconducting mag-
nets. As to underline the importance of this system, the
most prominent example is the 2008 incident at CERN. A
quench led to the explosive discharge of about two tons of
helium from a magnet housing into the LHC tunnel, dam-
aging the equipment so severely, that the LHC was shut
down for repairs until the end of 2009.

As an example from the planned GSI/FAIR facility, the
shortest period to be served by the timing system is about
3ns for the kickers. This is obviously too fast for a re-
action over the timing and controls network, but there is
mixed approach to meet requirements and enhance system
safety at the same time. The kicker timing depends on the
RF frequency currently present on the accelerator ring, and
this frequency is also sampled at the data master. Phase is
therefore known to the whole system. After the kicker sig-
nals readiness, the event is scheduled to an absolute time
3ns after a future RF edge. The edge is chosen in a way to
allow for transmission time of the control message trough
the timing network plus a safety margin. Because transmis-
sion and processing time is somewhere around 100 µs, the
kicker can safely be assumed to be unchanging in the in-
terim. Until now, the kicker at GSI was triggered on a local
basis without regard for other circumstances in the system,
while said approach would shift back control to the timing
master.

TRANSMISSION TIME

For an example of transmission and decoding times over
a WR [1] network, we took a closer look at the future
timing system of two accelerators, GSI/FAIR and CERN.
The following estimates from the White Rabbit Robust-
ness evaluation [3] show the time for transport of command
messages on the network.

Name Value µs Value µs
Min Max

Eth Frame TX Delay 0 (13 +BtxtFECpck)

Switch Routing Delay 0 13

Link Delay 5[µs
km

] 5 [µs
km

]
Eth Frame RX delay tFECpck tFECpck

FEC Encoding 2 2

FEC Decoding 2 2

Table 1: Elements of Control Message Frame Delivery
2

Both GSI/FAIR and CERN will employ a tree topology
with three layers of WR switches between master and end-

Figure 2: Delivery Delay of Control Message using
cut-trough.2

points. The main difference between systems in the cal-
culation is in the estimated length of fiber links used. The
value is 2 km for GSI/FAIR and 10 km for CERN. The
following values are calculated under the assumption that
switches have a cut-through option to preempt command
messages.

Control Message size Delay
GSI CERN

500 bytes 78µs 118µs
1500 bytes 102µs 142µs
5000 bytes 162µs 202µs

Table 2: Control Message Delivery Delay

The figures show that for interlock servicing, it would
be advantageous to connect time critical devices to the up-
per switch layers in order to reduce transmission time. For
fastest respone, connection to the topmost layer would re-
duce latency by about two thirds. From a practical point
of view however, since the tree is fanning out, this will of
course be limited by number of ports available on the first
switch layer or even the timing data master.

MODELING THE ACCELERATOR

Command messages sent over the timing network supply
event codes to the machines paired with execution times.
The machines are preprogrammed with a certain reaction
upon reception, which should also be done by the same
means. The accelerator has sequential processes with syn-
chronisation points. While the sequences are simple in
themselves, their interdependencies can be quite complex,

2M.Lipinski, C. Prados, White Rabbit Robustness

Delay Estimation

Proceedings of ICALEPCS2011, Grenoble, France THCHMUST06

Embedded + realtime software 1257 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 3: Machine sequences in a production chain.

depending both on external events like interlocks and inter-
nal synchronisation. Sequence architecture include jumps,
conditional branching, IO handling, loops, real time clock
waits and fast synchronisation between sequences. The se-
quences must be exchangable in parameters or completely
during run time. For the GSI/FAIR accelerator, about 20
of these sequences are expected to run in parallel, 32 are
aimed for to be future-proof.

PROCESSING TIME

CPU

With increasing complexity and number of processes,
keeping code execution and synchronisation deterministic
becomes ever more challenging. Fast modern CPUs, espe-
cially multicore architectures, offer vast processing power.
Their drawback is that they require a managing OS to un-
lock most of their advanced features, which have worst case
interrupt service latencies in the low millisecond range,
making it an inapt choice for a Timing Master architec-
ture. Real time Operating Systems are deterministic and
can offer ISR latencies in the low microseconds range and
most them are made for embedded CPUs (MCU). There
are no RTOS systems targeting Hi-End-Multicore architec-
tures available today.

Table 3 shows the latency measurements for a PowerPC
604 CPU (300MHz) on a MVME2306 board [4]. The dis-
cussed timing constraints could possibly be achieved with
an MCU running an RTOS system, but as shown in Ta-
ble 3, jitter is in the range of several microseconds. There
are also strong peaks under load (which would be common,
since the RTOS has to handle all machines and IO sources
in the system) which go as high as 200µs. This disqualifies
the solution for all fast interlock systems. We must also

bear in mind that transmission time through the timing net-
work ranging between 80-200µs must be added to the total
reaction time, restricting the use even further. This leads
to the assumption that an MCU with RTOS would proba-
bly be capable of running the required number of machine
agents, but as figures show, could hardly cope with timing
requirements for IO service requests.

Interrupt Latency Context Switching
max avg ± max avg ±

Idle System
RTL 13.5 (1.7 ± 0.2) 33.1 (8.7 ± 0.5)
RTEMS1 14.9 (1.3 ± 0.1) 16.9 (2.3 ± 0.1)
RTEMS 15.1 (1.3 ± 0.1) 16.4 (2.2 ± 0.1)
vxWorks 13.1 (2.0 ± 0.2) 19.0 (3.1 ± 0.3)
Loaded System
RTL 196.8 (2.1 ± 3.3) 193.9 (11.2 ± 4.5)
RTEMS1 19.2 (2.4 ± 1.7) 213.0 (10.4 ± 12.7)
RTEMS 20.5 (2.9 ± 1.8) 51.3 (3.7 ± 2.0)
vxWorks 25.2 (2.9 ± 1.5) 38.8 (9.5 ± 3.2)

Table 3: RTOS Latency Measurement Results Times in µs

FPGA Based Soft-CPU

This leaves programmable hardware for investigation.
Field Programmable Gate Arrays (FPGA) can be config-
ured by Hardware Description Languages (HDL) to func-
tion like every digital circuit from a simple FlipFlop over
a counter to a full blown embedded CPU. The major ad-
vantage is in their huge degree of flexibility. There are sev-
eral open source Soft-CPUs (Soft-CPU) as well as a couple
commercial ones available today. Soft-CPUs in FPGAs are
a fast, lightweight alternative to real hardware CPUs. Their
most interesting aspect is that it is possible to have enough
instances inside an FPGA to actually assign one Soft-CPU
to each task. They also do not accumulate wait times for
bus arbitration and memory access in operation, because
they do not need to share their memory resources. A mod-
ern FPGA not only hosts logic units, but memory cells as
well. Creating an instance of a memory controller template
with matching RAM block for each Soft-CPU inside the
FPGA makes them independent of their peers. In addition,
this RAM block is natively capable of Dual Port access,
providing the capability for on the fly change of sequence
programs. Due to the fact of the one Soft-CPU-per-task
policy, sequence programs can be blocking instead of us-
ing ISR, saving the time consuming context change. As-
suming 125MHz system frequency and therefore 8 ns pe-
riod per cycle, response times to external IO are well below
0.5µs, beating all competition. Due to the given flexibility,
building a complete custom Soft-CPU tailormade for the
given scenario is possible. The major drawback of a cus-
tom processing unit, wielding its own instruction set, is the
total lack of toolchains. Virtually everything in a toolchain

T. Straumann, Open Source Real Time Operating Systems Overview

3

3

THCHMUST06 Proceedings of ICALEPCS2011, Grenoble, France

1258C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software

that makes a productive workflow possible, that is, assem-
bler, linker, compiler, debugger etc must be created from
scratch. There will most likely be no community support,
since the application is very narrow. Since the scenario
requires standard functionality like basic math, counters,
loops and RTC support, it will be a lot of redundant work.

Figure 4: FPGA based Soft-CPU Cluster.

Soft-CPU Evaluation
A more promising approach is therefore to use a tried

and tested open source soft CPU and enhance it with cus-
tom instructions. In our case, those are mainly ones used
for quickly synchronising of soft CPUs.

Soft CPUs like the LM-32 are at around 2000 logic cells
and therfore very lightweight [5]. Today’s high end FPGAs
range in the > 250000 logic cells and can therefore easily
instantiated several tens of those CPUs. According to early
tests, the limiting factor is more likely to be the amount of
RAM present in an FPGA than the number of logic units.
Assuming around 2.5MB internal memory cells for a mod-
ern FPGA, this equals to about 80kB for each of the 32 soft-
cores desired for the FAIR accelerator, more than enough
to execute quite big programs. As an example, running a
GNU debugger on system currently consumes around 1 kB
memory.

The idea is then to create a Soft-CPU for each machine
handler as well as one or more instances dedicated to IO
signal and high level communication handling, as shown in
figure 4. So instead of solving a complex scheduling prob-
lem in software to maintain deterministic system behavior,
parallel tasks each get assigned their own Soft-CPU. Their
synchronisation can be done by a custom HDL block, an
n ∗ n matrix for synchronisation messages, making sync
possible within less than five processor cycles (< 40 ns)
for checking of simple flag bits.

In the field of experimental electronics, a multi author
situation should also be considered. It makes sense to let

people working with the actual experiment write the soft-
ware, which is another point in favor of existing toolchains.

CONCLUSION

In sight of time availabe to react to system interlocks and
signals, it is evident that a pure CPU solution will not be
able to satisfy the requirements. A pure custom hardware
solution probably would satisfy the requirements for any
given constraint, but prove difficult when it comes to fol-
low changes at the operating level. Soft-CPUs are a good
compromise between both worlds, with the added benefit
of readily available development tools. To provide more
IO speed and better scalability in face of system load, the
choice falls to a multi core architecture from Soft-CPUs
with dedicated internal memory. This setup shall be com-
pleted by a fast synchronisation mechanism and the possi-
bility to dedicate Soft-CPU to specific sequence programs
and IO handling.

OUTLOOK

The first steps will be the implementation of customized
Soft-CPUs in a small scale test system in order to mea-
sure actual response times. An mechanism for safe on-
the-fly change of the sequence programs in Soft-CPUs has
to be devised, and several Soft-CPUs will be tested in a
small cluster to demonstrate fast synchronisation between
sequence programs. A prototype system is planned to be
set up in 2012 to drive the first component to be comis-
sioned to the FAIR extension of the GSI accelerator, a pro-
ton linear accelerator module.

REFERENCES

[1] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, G.
Gaderer, “White Rabbit: Sub-Nanosecond Timing Distribu-
tion over Ethernet”, IEEE Precision Clock Synchronization
for Measurement, Control and Communication 2009, pp1-5,
Brescia, October 2009.

[2] T. Straumann, “Open source real-time operating systems
overview”, Proceedings of the 8th International Conference
on Accelerator and Large Experimental Physics Control Sys-
tems, San Jose, USA, 2001.

[3] M. Lipinski, C. Prados, “White Rabbit Robustness”, 2011
http://www.ohwr.org/projects/white-rabbit/

repository/changes/trunk/documentation/

specifications/robustness/robustness.pdf,
last visited 30.09.2011.

[4] B. Todd, “A beam interlock system for CERN high energy
accelerators”, Ph. D. thesis, Brunel University West London,
2006.

[5] W.W. Terpstra, “The Case for Soft-CPUs in Accelerator Con-
trol Systems”, 2011, ICALEPS’11, THCHMUST05.

Proceedings of ICALEPCS2011, Grenoble, France THCHMUST06

Embedded + realtime software 1259 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

