
CONTROL AND TEST SOFTWARE FOR IRAM WIDEX CORRELATOR

S. Blanchet, D. Broguiere, P. Chavatte, F. Morel, A. Perrigouard, M. Torres
IRAM, Grenoble, France

Abstract

IRAM1 is an international research institute for radio as-
tronomy. It has designed a new correlator called WideX
for the Plateau de Bure interferometer (an array of six 15-
meter telescopes) in the French Alps. The device started its
official service in February 2010. This correlator must be
driven in real-time at 32 Hz for sending parameters and for
data acquisition. With 3.67 million channels, distributed
over 1 792 dedicated chips, that produce a 1.87 Gbits/sec
data output rate, the data acquisition and processing and
also the automatic hardware-failure detection are big chal-
lenges for the software. This article presents the software
that has been developed to drive and test the correlator.
In particular it presents an innovative usage of a high-
speed optical link, initially developed for the CERN AL-
ICE experiment, associated with real-time Linux (RTAI) to
achieve our goals.

INTRODUCTION

After the installation of its new generation of receivers
in 2006, IRAM has started to build a new correlator called
WideX that can process up to 64 GHz of total analog band-
with [1]. It is a big machine with 3.67 million channels,
distributed over 1 792 custom2 chips. With such a num-
ber of components, powerful programs for automatic test-
ing are crucial, otherwise the project fails. Real-time driv-
ing at 32 Hz and data processing is also a serious software
challenge because the total device output data rate is about
1.87 Gbit/s.

TECHNICAL CHOICES

Data Transmission

For technical convenience the correlator is divided into
four identical sub-units (Fig. 1), driven by four computers.
It means that it requires 4 data links at 448 Mbit/s. Finding
a way to transfer data at such rate, was a headache for en-
gineers. Fortunately CERN had already developed such a
high-speed serial link for its own needs3 and it was possible
to buy this technology jewel at a very affordable price. The
CERN solution is called Detector Data Link (DDL) [2]. It
is a versatile high-speed optical link, that can transfer up to
1.5 Gbit/s. It is composed of:

1Institut de Radioastronomie Millimétrique
2The correlator chip is a 250 MHz application-specific integrated cir-

cuit (ASIC) designed under IRAM specifications [1].
3CERN has developped DDL for the LHC/ALICE experiment.

Figure 1: IRAM WideX on the observatory site. Note the
four orange fibers that connect the four sub-units.

• a Source Interface Unit (SIU) to plug into the correla-
tor (Fig. 2).

Figure 2: CERN Source Interface Unit board.

• a Destination Interface Unit (DIU) hosted on a read-
out receiver card (Fig. 3) to connect to a computer.

Figure 3: CERN Read-Out Receiver Card (PCI-X slot)
with 2 Destination Interface Units.

• a fiber optic to link directly the SIU and the DIU (or-
ange fibers on Fig. 1).

• a Linux driver with the source code.

This optical link is very easy to use: the data are sent to
the SIU through a parallel bus, then they appear automati-

THCHMUST02 Proceedings of ICALEPCS2011, Grenoble, France

1240C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software



cally in the computer memory at the address that has been
provided to the driver.

Real-time Operating System

While processing large amounts of data, the computer
must drive the data acquisition at 32 Hz, therefore a real-
time operating system is required. Linux-RTAI4 was cho-
sen because it has already been successfully used at IRAM,
for critical tasks like the antenna control.

This real-time engine guarantees that the data acquisition
runs at 32Hz, without losing any data, whatever the com-
puter load is. Among the different RTAI running modes,
LXRT5 was prefered, because it allows hard real-time pro-
grams to run in user space: the software development is
easier and programs can be written in C++ instead of C
only.

The only small drawback is that the CERN driver and
libraries are not directly compatible with RTAI, but a mod-
ification of the CERN source code has solved this problem.

Software Libraries

Because electronic engineers need very fast and respon-
sive testing tools, the fastest software libraries have been
carefully selected to build the programs:

• Qt: a free C++ cross-platform framework [4]. It pro-
vides fast and nice graphical widgets and also many
other very useful classes. It is developped by Nokia
Corporation.

• Qwt: Qt Widgets for Technical Application [5]. It is a
Qt extension, that provides nice technical widgets like
a plotter (QwtPlot) with built-in zoom and autoscal-
ing. It is a community project.

• FFTW: Fastest Fourier Transform in the West [6].
It is a free library to compute the Discrete Fourier
Transform in one or more dimensions. It uses code-
generation and runtime self-optimization techniques
to achieve a very high level of performance. This soft-
ware library was developed at the Massachusetts Insti-
tute of Technology (MIT).

SOFTWARE

The different pieces of hardware impose some con-
straints on the time diagram (Fig. 4) that should be ex-
plained to understand the most interesting details of the
software design.

1. The correlator data output is scheduled on an internal
32 Hz clock6.

4RTAI: RealTime Application Interface [3]. It is a real-time extension
for the Linux kernel from the Department of Aerospace Engineering, Po-
litecnico di Milano, Italy.

5LXRT: Linux Extension for Real Time. It is a special RTAI scheduler.
6The 32 Hz frequency is dictated by the Walsh functions that are used

to reduce the effects of electrical crosstalk between antenna signals.

2. To read data, the computer sends a RDYRX (Ready-to-
Receive) command before the 32 Hz pulse. The trans-
fer starts with the 32 Hz pulse.

3. The data transmission is long and uninterruptible.
Therefore it allows only a small sending window after
EOBTR (End Of Block Transfer).

4. The CERN board generates no hardware interrupts: a
polling is required to detect the end of transmission
(EOBTR).

5. The CERN board writes data directly in memory with-
out using the central processor, therefore it is the best
moment to process data from the previous acquisition
period.

Figure 4: Time diagram.

Time Synchronization

Like the antenna position, the correlator acquisition pa-
rameters change relentlessly with the Earth rotation. Un-
like the correlator that synchronizes itself directly on the
time signal of the observatory maser, the computer has no
particular hardware for clock synchronization. However a
software-only solution works very well:

1. Because the transmission duration is constant and
starts always on a 32 Hz pulse (Fig. 4), the computer
considers the end-of-block-transfer (EOBTR) event as
a faithful image of the correlator clock. Therefore the
real-time tasks are synchronized on this event. The
polling loop starts only when required, at the very last
time, and exits after only few iterations. In this case,
it makes sense to use a high-frequency7 loop.

2. To know the absolute time associated to each EOBTR

event, the computer uses the Network Time Protocol8

server that depends on the observatory maser.

Software Architecture

There is only one real-time program: CONTROL (Fig. 5).
It has two real-time threads: DRIVE and PROCESS.

7In our case, the polling loop runs at 1 kHz, but it could be higher.
8Network Time Protocol (NTP) is a protocol for synchronizing the

clocks of computers over variable-latency networks.

Proceedings of ICALEPCS2011, Grenoble, France THCHMUST02

Embedded + realtime software 1241 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 5: Software architecture.

• DRIVE drives the data acquisition. It has the first real-
time priority to avoid any data loss. It executes the
following loop of instructions:

1. Get a free memory page9, and send its address to
the CERN driver.

2. Send a RDYRX command to the correlator, and
then sleep10 until just before the next EOBTR

event.

3. Poll until EOBTR occurs.

4. Push the page of the just-arrived data into the
waiting queue of the PROCESS thread,

5. Send any pending parameters to the correlator.

6. Sleep until just before the next 32 Hz pulse.

7. Repeat the loop.

• PROCESS processes the raw data from the correlator. It
has the second real-time priority to guarantee that the
processing is finished in the expected time. It executes
the following loop of instructions:

1. Take the first data page from its waiting queue.

2. Process the data and write the result into the
shared memory.

3. Push back the memory page to the pool.

4. Repeat the loop.

Because of the chosen priorities, the Linux kernel and
all the other software run only when DRIVE and PROCESS

are asleep. To send specific command to the correlator,
programs must pass through SERVER (Fig. 5) to transform
TCP requests into RTAI messages. The command will be
really sent to the correlator during the next sending window
(Fig. 4).

9The memory page comes from physmem: it is a reserved memory area
for CERN DDL direct memory transfers. A realtime-compatible memory
allocator has been specifically written for this area because the Linux ker-
nel does not manage it.

10The sleeping and the transmission last exactly the same time, but the
sleeping ends before, because it starts before.

RUNNING MODES

There are different running modes, one for each testing
stage.

Simulation Mode

The target of this mode is to test software without need-
ing hardware, and also to prove that the processing algo-
rithms are correct. The simulation mode changes the be-
haviour of the driving task: instead of reading the CERN
driver output, the thread calls real-time functions that gen-
erate custom simulation data.

There are several simulation patterns, one per kind of
tests. For example, Fig. 6 shows a simulation pattern for
chip failure detection.

Chip Debugging Mode

The goal of this mode is to check that all the correlator
chips work as expected. This mode modifies the processing
task: instead of analyzing spectrum, it compares together
the raw outputs of the chips. A special program displays
the results as a 448-cells matrix (Fig. 6). When a problem
is detected in a chip, the cell color changes. The user can
click on the chip to display its channel values (Fig. 7).

Figure 6: Chip debugging window. A simulation pattern is
printing messages on the chip matrix.

Observing Mode

The purpose of this mode is to show that the correla-
tor can extract the hidden signal from the noise. Therefore
it implements almost all the operations for real observing.
This mode modifies the processing task to analyze the spec-
trum in real-time. These signal processing operations are
organized in sequence: Fast Fourier Transform followed
by several corrections of levels and phases. Each pipeline
stage can be enabled or disabled in order to measure its

THCHMUST02 Proceedings of ICALEPCS2011, Grenoble, France

1242C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Embedded + realtime software



Figure 7: Content of a chip. The curve is plotted with Qwt-
Plot [5].

individual effect and its contribution to the total execution
time. A fast viewer (Fig. 8), with direct buttons to control
signal processing, has been written to display the results. It
heavily uses Qt [4], Qwt [5], and FFTW [6].

Figure 8: Dedicated viewer for correlator spectrum.

CONCLUSION

Thank to the innovative pair CERN DDL – RTAI, it is
possible to build a very high-performance control software.
It drives in real-time a complex scientific device, while pro-
cessing large amounts of data. The icing on the cake is that
the solution is built with free open-source software only.

ACKNOWLEDGMENT

The authors would like to thank Ervin Dénes,
Csaba Soós and Pierre Vande Vyvre from CERN: we are

grateful for their free hardware loan and their precious help
at the early stage of the project.

REFERENCES

[1] M. Torres, “Main Technical features of the WideX correlator”
http://www.iram.fr/widex

[2] CERN DDL website http://cern.ch/ddl

[3] RTAI website http://www.rtai.org

[4] Qt website http://qt.nokia.com

[5] Qwt website http://qwt.sourceforge.net

[6] FFTW website http://www.fftw.org

Proceedings of ICALEPCS2011, Grenoble, France THCHMUST02

Embedded + realtime software 1243 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


