
INS
SERVIC

Abstract
The CERN

more than 9
approximatel
data loading
service is m
especially w
the LHC bea

In order to
provider’s g
underlying s
doing what,
methods, and

Armed wi
analyse and
scalability
maintenance
diagnose pas

The Logg
Application
comprised o
These system
capture data
as JMX.

The succe
ability to cop
linked to the

This paper
developed, a
data is used t

Born out o
since 2004,
(herein referr
retrieve billio
the complete
systems, and

The LS is
relied upon t
availability
paramount.

ARC
Figure 1 s

essentially co
• Two O

database
and othe
days, an

STRUMEN
CE: ENSU

C. Rod

N accelerator L
90 terabytes
ly 450 gigab
processes and

mission-critic
with respect to
am and equipm
o effectively m
goals should
ystems are be
from where,

d how long ea
ith such infor
tune system p
ahead of t

operations
st, on-going, o
ing Service i

Servers, an
of several lay
ms have all
about system

ess of the Lo
pe with ever g
instrumentati

r describes th
and demonstr
to achieve the

INTRO
of the LHC L

the CERN
red to simply
ons of data ac
e CERN acc

d experiments
considered a
to support day

and perform

CHITECT
shows a basic
omprised of:
racle databas
e (MDB) whe
er Oracle data

nd a Logging

NTATIO
URING P

erick, R. Bi

Logging Serv
of data onlin

bytes per day
d data extract

cal for day-t
o the tracking
ment.
manage any s
d include kn
eing used, in
, using which

ach action take
rmation, it is
performance o
time; assess

and infrastr
or re-occurring
is based on O
nd Java tec
yered and mu

been heavily
m usage, using

ogging Servic
growing deman
ion in place.
he instrumenta
rates how th
 goals outline

ODUCTION
Logging projec

accelerator
as the “LS”) i
cquisitions pe

celerator com
[1].
mission critic
y-to-day oper
mance of

TURE OVE
c overview o

ses: A so-ca
ere raw data fr
abases is pers
database (LD

ON OF TH
PERFORM

AND D

illen, D. Din

vice currently
ne, and proc

y, via hundred
tion requests.
to-day operat

g of live data

service, the se
nowing how
terms of: “W

h applications
es”.
s then possibl
over time; pla

the impac
ructure upgr
g problems.
Oracle DBMS
chnology, an
ulti-tiered sys
y instrumente

g technologies

ce and its pr
nds can be dir

ation that has
he instrument
ed above.

N
ct, and operat
Logging Se

is used to stor
er day, from a

mplex, related

cal service, he
ration. As suc
this service

ERVIEW
f the LS whi

lled Measure
rom Java proc
sisted during s
B) where a su

HE CERN
MANCE,
DIAGNO

nis Teixeira

holds
cesses
ds of
 This
tions,
from

ervice
w the
Who is

s and

le to:
an for
ct of
rades;

S and
nd is
stems.
ed to
s such

roven
rectly

been
tation

tional
ervice
re and
across

sub-

eavily
ch the

are

ich is

ement
cesses
seven
ub-set

•

•

•

•

Th
signi
serve
acce
appli

Th
deal
writi
recor
throu
LDB

N ACCEL
SCALAB
STICS

a, CERN, G

of MDB dat
SCADA syst
Distributed J
data into the
A sub-set of
using in-hou
comprehensiv
the data of lo
A powerful d
extracting da
command lin
the API must
there are
heterogeneou
is not permitt
A generic Jav
as a means to
tool is heavi
registered use

Figure 1: Log

he Java APIs
ificantly optim
ers. For data
ss is actually
ication server

PERFOR
STAB

he LS is a hig
with very h

ing the MDB
rds/day, which
ughput of ap

B needs to pe

LERATOR
BILITY, M

Geneva, Swit

ta and pre-fil
ems are stored
Java APIs ar
databases.

f MDB data
se developed
ve set of met

ong-term intere
distributed Jav
ata from the d
ne interface. A
t be pre-registe

100 applica
us client comm
ted.
va GUI called
o visualize an
ily used, with
ers.

gging Service

for both logg
mized, and r
extraction cli

y made in a
is hidden wit

RMANCE,
BILITY … A
gh performanc

high data thro
has to proces
h equates to a
pproximately
ersist around

R LOGGI
MAINTE

tzerland

ltered data fro
d on-line inde
re responsible

is transferred
PL/SQL cod

tadata to dyna
est.
va API is the s
databases, whi
Applications w
ered. At the ti
ations regis
munity. Direc

d TIMBER is
d extract logg
h more than

architecture o

ging and extra
run on Oracl
ients, the fact
distributed m

thin the Java A

SCALABIL
AND USER
ce service, w

oughputs. At
ss approximate
around 270GB

100TB). M
4 billion rec

ING
ENANCE

om industrial
efinitely.
e for loading

d to the LDB
de that uses a
amically filter

sole means of
ich includes a

wishing to use
ime of writing
tered to a

ct SQL access

also provided
ged data. The
five hundred

overview.

cting data are
le application
that database

manner via an
API.

LITY,
RS
hich needs to
t the time of
ely 5.4 billion
B/day (annual
eanwhile the
cords/day for

l

g

B
a
r

f
a
e
g
a
s

d
e
d

e
n
e
n

o
f
n
l
e
r

THCHAUST06 Proceedings of ICALEPCS2011, Grenoble, France

1232C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

some 850 thousand signals. This boils down to storing
140GB per day (50TB/year) and keeping it available
online beyond the lifetime of the LHC.

The success of the LS leading to an increase in scope
beyond the LHC, together with unforeseen events
requiring more data to be available, has meant that the
current data throughput levels far exceed initial
expectations, which predicted 1TB/year during LHC
operation.

Figure 2: Evolution of logged data.

Figure 2 shows the evolution of logged data, and
clearly illustrates how the LS has had to scale to satisfy
evolving requirements. The ability to scale in such a
manner is in no small part down to the design of the LS
[2], however instrumentation also plays an important role,
as will be explained later in this paper.

The amount of data logged only tells one side of the
story, since data is actually logged in order to be extracted
later on to support operational decisions, which often
have to be made within short time constraints; therefore
data extraction must be as fast as possible.

It is perfectly legitimate for users to ask for data
spanning long time periods and/or from long ago.
Therefore the LS must satisfy such diverse requests not
only as quickly as possible, but also whilst remaining
stable such that is can support other operations in parallel.

The determining factor in how a service performs is
always how the service is used. Experience has shown
that there is often a big difference between how service
providers think the service will be used, how users claim
they will use the service, and how users actually use the
service. This is where instrumentation comes in…

WHAT IS INSTRUMENTATION?
In this paper, instrumentation refers to capturing

information about service activity in real time, and over
time, in order to know who is doing what, from where,
how things are being done, and how long various actions
take.

Who?
This should always indicate the real end-user of the

service – somebody who can be contacted. In other
words, in an n-tier environment, it should not just be the
directly connected OS user on one of the tiers.

What?
In its simplest form, this could be the name of a method

/ function / procedure etc. A more comprehensive solution
would also capture details of all of the dimensions that
can affect the outcome of an action and/or the
performance of the service. These details are domain
specific, but an example from the LS when querying data
would be: the API method, the names of the signals
concerned, the time window, and any additional data
manipulation parameters (see Figure 4).

Where?
This should be a host name or IP address, and process

id, which can be used to physically locate calls being
made to the service.

How?
This means identifying which application (by name) is

using the service, and if the service is accessed via
libraries – which versions of the libraries are being used.

How Long?
Knowing the amount of time spent doing something is

an essential ingredient in understanding how a service is
performing, and why problems may have occurred.
Therefore it is necessary to capture the elapsed time for
each significant action executed within the service.

Besides these key elements, it is also important to

instrument if actions finish successfully or throw
exceptions in order to understand unexpected behaviour.

WHY INSTRUMENT?
Instrumentation is often considered an unnecessary

overhead, especially by developers who want their code
to run as fast as possible. However, this is a rather
shortsighted view on things.

Knowing the answers to the questions above enables
service providers to understand how a service is really
being used (or misused), and how it is performing in
terms of both throughput and response times. In turn, this
allows to pre-empt problems, identify potential
bottlenecks, plan system upgrades, and when issues
inevitably occur – diagnose and react swiftly and
effectively.

Collectively, these benefits far outweigh any perceived
run-time overhead of having instrumentation in place.

The rest of this paper will focus on particular examples
of instrumentation deployed in the LS, and how it has
helped meet the requirements for performance,
scalability, and stability.

DATA LOADING
Every day, the LS treats millions of data loading

requests, coming from hundreds of client processes. The
distribution of these requests across clients is heavily
skewed. For example, one client may be responsible for

Proceedings of ICALEPCS2011, Grenoble, France THCHAUST06

Data and information management 1233 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

sending up to 40% of the data, and other just 1%. In
order to know how the systems are being used, it is
important to capture these data distributions.

Likewise, the data distribution within data loading
requests may be heavily skewed across clients, or over
time. In other words a fixed size data loading request may
contain a lot of data for a few signals, or a small amount
of data for many signals. This distribution can have a
significant impact on performance, and therefore also
needs to be captured to support performance analysis.

The other factor impacting performance of data loading
in the LS is whether or not a request contains duplicate
data (same timestamp received for the same signal),
which requires a special treatment taking 4 times longer
to process than a request without duplicate data.

Initial Implementation
The instrumentation in the LS has evolved significantly

over many years. Initially most of the above details were
just captured in log files. The problem with this approach
is that they were very difficult to analyze, especially as
the parallel load on the LS began to increase, and non-
related log entries become more and more interleaved.

To understand the data distribution across clients, an
internal database job ran queries against the logged data,
making aggregates of the amount of data received per
client. This approach was not scalable, and as the data
rates increased the aggregate queries were continually
adapted to use increasingly smaller sample periods of
data. A new approach to instrumentation was required.

Evolution
A well-structured instrumentation framework was

developed and put in place at the level of the data loading
API running on the Oracle application servers. This
framework captures all details of all data loading requests,
performs on-the-fly in-memory data aggregations, and
writes the results into the database on a daily basis.

This approach is extremely accurate (since aggregates
are based on actual data rather than data samples), and
avoids the need to use significant database resources to
estimate system usage. In addition the time spent on each
action (parse, check, prepare, load) within each data
loading request is captured and aggregated to facilitate
analysis of system performance, and identify bottlenecks
and bad clients.

The other major advantage with the instrumentation
framework is that all information is well structured and
exposed via JMX using Java managed beans (MBeans),
which can be consulted in real-time via any JMX (Java
Management Extensions) interface. This allows service
providers to easily see what the systems are currently
doing, and diagnose on-going problems.

INTERNAL DATA TRANSFER
The majority of the data logged in the MDB are

candidates to be transferred to the LDB for long-term
storage. What data actually gets transferred is governed

by a comprehensive set of metadata defining things such
as deltas, smoothing, fixed logging, precision etc. for each
of the defined signals. The act of applying the metadata
to the raw data, and filtering and transferring the results to
the LDB are carried out using in-house developed
PL/SQL code which is executed in parallel by 8 internal
database jobs running every 5 minutes. The signals
whose data is treated by 1 of the 8 jobs are distributed
across the jobs according to a predefined category for
each of the signals.

Knowing how each execution of the data filtering and
transfer jobs performs, in terms of number of signals,
number of candidate values per data type, number of
logged values per data type, and times taken for each
internal action is essential.

Data Capture & Diagnostics
The PL/SQL data filtering and transfer code captures

all of the above information in memory, and writes the
results into dedicated database tables after each execution.

This detailed information remains available for 7 days
(lifetime of MDB data) and is extremely useful for
diagnosing performance problems – identifying if long
executions times are isolated to particular groups of data,
specific data types, certain times of the day or a specific
type of action (such as data collection and filtering in the
MDB, or data transfer to the LDB).

The detailed information is also aggregated on an
hourly basis (Figure 3), and results are stored long-term in
the LDB. This aggregate data helps identify trends in
system performance such as correlations with accelerator
performance, or gradual performance decreases as
demands on the system increase (e.g. requests to log data
for more signals and / or at higher frequencies.

Figure 3: Example MDB to LDB instrumentation data.

THCHAUST06 Proceedings of ICALEPCS2011, Grenoble, France

1234C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Data and information management

DATA EXTRACTION
With up to 2 million requests per day to extract data for

one or more signals over greatly varying time periods –
data extraction from the LS represents a significant
portion of overall activity.

Data rates vary significantly from one signal to another,
and from one time period to another (e.g. according to
whether or not there is beam present in the LHC).

In such an environment, users are often unaware of the
amount of data that they are implicitly requesting, or of
the best methods to use to extract with.

Aiming for Service Stability
As part of an attempt to assure service stability, every

request to extract data is transparently instrumented,
exposed, and logged using a framework similar to that for
data loading, based on JMX. For each user: the running,
last added, last finished, and last unsuccessful requests are
always accessible via any JMX console. The Who, What,
Where, How, and How Long information is embedded in
each request, including signals involved, the extraction
time window, invoked method, elapsed time, library
versions, and the result (see Figure 4).

Figure 4: Data extraction instrumentation via JMX.

The ease of access of this information greatly facilitates
following up support requests, since service providers can
quickly access the full set of details of what the user is
trying to do. Furthermore, because this information is
accessible in real-time, a JMX agent connects every 5
seconds to the remote data extraction server, assesses the
current situation, and can take various actions:
• If a request has been running for too long, a warning

is first sent to service administrators, and if the
situation continues – the request will be terminated.
In such situations, it is common practice for the
service administrators to diagnose the problem and

pro-actively contact the user. More often than not –
the users just need to be advised about which
alternative methods to use or attribute values to
apply.

• If any centralized data extraction server fails, service
administrators are notified of the failure, together
with details of all requests running prior to the
failure, such that they can diagnose the cause, inform
the user responsible, and adapt the service to be more
resilient in the future.

Another way in which the captured data is used is
related to backwards compatibility during upgrades to the
API. Because all method calls are logged, it is possible to
deduce whether or not certain users will be affected by
necessary API changes, and contact them in order to
adapt their code, or delay the changes.

SUMMARY
 Instrumentation should not be considered as an

overhead, but rather as an integral component of any
software infrastructure. Once in place it quickly becomes
part of the backbone of the system, allowing service
providers to quickly and confidently diagnose problems,
tune system performance, and plan upgrades.

The Logging Service instrumentation data is constantly
used to support users, and has helped unravel otherwise
impossible to diagnose problems in a complex and
distributed environment.

The Logging Service is a stable, high performance, and
heavily used service. The performance, proven ability to
scale, and overall stability are testament to the value of
the significant instrumentation in place.

REFERENCES
[1] C. Roderick and R. Billen, “Capturing, Storing and

Using Time-Series Data for the World’s Largest
Scientific Instrument”, November 2006, CERN-AB-
Note-2006-046 (CO).

[2] C. Roderick et al., “The LHC Logging Service:
Handling Terabytes of On-line Data”,
ICALEPCS’09, Kobe, Japan, October 2009,
WEP005.

Proceedings of ICALEPCS2011, Grenoble, France THCHAUST06

Data and information management 1235 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

