
 SNS ONLINE DISPLAY TECHNOLOGIES FOR EPICS*

K.U. Kasemir, X. Chen, J. Purcell, E. Danilova, ORNL, Oak Ridge, TN 37831, U.S.A.

Abstract
The ubiquitousness of web clients from personal

computers to cell phones results in a growing demand for
web-based access to control system data. At the Oak
Ridge National Laboratory Spallation Neutron Source
(SNS) we have investigated different technical
approaches to provide read access to data in the
Experimental Physics and Industrial Control System
(EPICS) for a wide variety of web client devices. We
compare them in terms of requirements, performance and
ease of maintenance.

INTRODUCTION
Traditional control system operator interface tools were

often standalone applications for a specific operating
system [1]. Recent developments emphasized operating
system portability, allowing users in their offices or even
at home to run the same applications that are used in the
control room [2]. These new tools are highly integrated,
offering a workflow that previously required switching
between multiple standalone programs [3]. While there is
a continuing need for such feature-rich applications, there
is at the same time a desire for web-based control system
access. This online view of the control system might be
read-only, at a limited update rate and restricted to a
subset of the machine, but it should be accessible from
any web browser, be it a desktop computer, laptop,
netbook or cell phone, without need to install any
additional software on the client device.

CONTROL SYSTEM DATA
The following examples refer to EPICS, but the

fundamental ideas apply to any control system. The
control system allows network access to data points called
Process Variables (PVs). Certain PVs might change at a
known rate, but the most common case is data that
changes at arbitrary times. “Set point” PVs for example
will stay constant until adjusted by an operator. PVs for
temperature readings might vary slowly over time, while
other machine parameters can change rapidly.

Polling vs. Event-Driven
A control system display tool should be event-driven,

reflecting changes as they occur. If the display is polling
the PVs for updates, resources are wasted polling data
points that stay constant while at the same time missing
updates that are faster than the poll rate.

BASIC WEB TECHNOLOGY
The Hypertext Transfer Protocol, HTTP [4], is the basis

of all web technology. It typically functions as follows:

1) Web client establishes a network connection to
the web server.

2) Web client requests a web page by sending
GET /some_web_page.html HTTP/1.1

3) Web server returns the web page content.
4) Server and client close the network connection.

The request as well as the response can include

additional parameters. Server and client may keep the
network connection open for follow-up requests, but the
protocol remains a request-response pattern.

There is no method in HTTP that is implemented by all
web clients to support a “push” of updates from the server
to the client. Every data transfer needs to start with a
request sent by the client. This makes HTTP
fundamentally unsuitable for event-driven updates as
desired for control system displays! Users would have to
manually initiate a request by pushing the “Reload”
button on their web browser to update the display to the
most recent data.

 There are several commonly used approaches to work
around this limitation in a way that is supported by the
majority of web browsers.

Web Browser Plug-Ins
Most web browsers allow the installation of plug-ins to

extend their functionality. The CAML project uses a
WebCA plug-in to add native support for EPICS Channel
Access to several web browsers [5]. This solution offers
the best possible performance because the web client
directly receives updates from the control system.

The approach is, however, specific to certain web
browsers. The direct network traffic between the client
and the control system is also often blocked by firewalls
that only allow access to the standard web server port
TCP 80, or generally restrict access to the control system
to computers on the plant network.

Consequently, this approach cannot offer generic web
access to control system displays from a wide range of
devices, including cell phones.

Ajax
Ajax [6] uses JavaScript code running inside the web

browser to create XMLHttpRequest (XHR) objects [7]
that in turn perform requests to a web server. The
JavaScript code then handles the response, typically by
updating the web page with the received data. Ajax still
uses the HTTP request-response pattern, but it no longer
requires the user to manually initiate requests because the
JavaScript code inside the web browser itself can initiate
the requests.

Ajax can be used to implement a polling web client that
periodically requests updates from the web server. ___

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 for the U.S. Department of Energy

THBHAUST01 Proceedings of ICALEPCS2011, Grenoble, France

1178C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view

Long Poll
A “Long Poll” [8] uses a polling Ajax web client as just

described with the additional agreement between server
and client that the server can delay its response until
updates are available:

1) JavaScript in client starts XHR to request.
2) Web server waits until updates become available.
3) Once there are updates, web server returns the

data.
4) Web client displays the data and immediately

starts another XHR, i.e. repeat step 1.

Technically, this is still a polling request-response

mechanism. In a true event mechanism the client would
not have to re-issue any request. The server would simply
send updates via a once established network connection.

Performance is lower than a true event mechanism
because of the additional network traffic for sending the
requests. The client or server might even close their
network connection at the end of each transaction,
requiring a new connection for each long poll.

To the end user, there is hardly a difference: The
display can be updated as soon as the server sends new
data.

SNS STATUS WEB SITE
The SNS Status web site is a Java Server Page (JSP)

project running on a Tomcat web application server [9].

Figure 1: SNS Status Web Page.

It displays a fixed set of pages, arranged in “tabs”, to

summarize the recent history of SNS operation, including
beam power, state of beam lines, availability statistics,
recent logbook messages, and shift summaries.

Certain sections of these web pages are periodically
updated via Ajax. The beam power in the upper left
section of Fig. 1 for example is refreshed every 3 seconds,
while other sections of the page are updated at intervals of
30 seconds or even minutes.

Java code on the web server, i.e. Tomcat, subscribes to
a predefined, fixed list of PVs and maintains a table of
their current values. Ajax requests from web clients

invoke Tomcat servlets, which then read the current PV
data and format it to for example generate the beam status
information shown in Fig. 1.

The SNS Status Web site has been online since July
2010. It has been very stable. It can be accessed by any
web client, and requires only a few CPU and memory
resources. Sections of this web site are displayed on
hallway monitors throughout the SNS facility. The beam
history information from this web site is a key component
of daily status meetings.

The majority of its content, however, is based on data
read from a relational database, not online PVs. Only
about 50 PVs are monitored by the Tomcat application,
updating sections of the web page at comparably slow
periodic rates as mentioned.

The web site offers a common denominator of data that
is of interest to many users. The overall content and its
layout are fixed. End users cannot customize it to meet
their specific, individual needs.

SNS DASHBOARD
The SNS Dashboard was created to provide more

flexibility. Users can choose from a list of widgets, some
of which are customizable. Widgets can be opened and
closed; they can be “dragged” to the desired position on
the web page.

Figure 2: SNS Dashboard.

At this time there are about 20 widgets. Some duplicate

information that is already offered on the SNS Status web
site, but users can now consolidate the information of
interest on their personal dashboard. There are also
widgets for a user base that was too small to warrant
inclusion in the SNS Status web site. Examples include a
widget that lists the devices affected by scheduled power
outages, or a widget with indicators for the status of
certain groups of front-end computers.

Widgets that rely on PV data utilize a Long Poll,
updating as events are received from the control system.
The PV pool is not fixed as in the SNS Status web site.
Some widgets allow the user to configure which PVs to
display. The web client will invoke a subscription servlet

Proceedings of ICALEPCS2011, Grenoble, France THBHAUST01

Operational tools and operators’ view 1179 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

for these PVs. The web server subscribes to the control
system PVs and returns updates as they arrive from the
control system in the next Long Poll.

In our initial implementation, each widget that depends
on PV updates would issue a Long Poll, but we learned
that most web browsers limit the number of parallel XHR
requests to 6 or even 2. To adjust for this limitation, our
dashboard software performs only one Long Poll for the
whole dashboard page of a user. The data returned by the
web server contains tags, which are used by the client to
dispatch the data to the widgets that requested it.

The achievable Long Poll update rate varies. 10 Hz are
often possible, but we throttle it to 1 Hz because it was
considered fast enough for a generic online display. The
web server tracks the PV subscriptions of each web client.
If a PV changed, it is marked for update. Adding a 1
second delay to the Long Poll means that the web server
can often return the accumulated updates for multiple PVs
within one Long Poll, reducing the network traffic.

The Dashboard software is more complex than the SNS
Status web page. The dashboard configuration for each
user is persisted in a relational database. It is read by the
web server when a user logs on, then duplicated in the
web client. This duplication in the web client allows the
user to efficiently edit the configuration inside the web
browser. When the user relocates a widget inside the web
browser or adds a PV name to a widget, the web client
does not need to communicate each mouse click or key
press to the web server. The web client only sends the end
result to the web server, for example the new widget
location or the added PV name, thereby minimizing the
network traffic and optimizing the responsiveness of the
web page.

Keeping the dashboard data consistent between the web
server and client requires attention to detail. To
complicate the implementation, this has to be done in two
very different programming environments: Java on the
server, but JavaScript, a Document Object Model (DOM)
and Style Sheets in the web client. The JQuery scripting
library [10] simplified the client-side implementation,
especially the Ajax handling for different web browsers.

The Dashboard was published in June 2011 and is
gaining acceptance. Users can create multiple setups, for
example one for the desktop and one for the cell phone.
We have been adding new widgets based on user
requests. At this time, however, users can not create their
own widgets or contribute them to the list of available
widgets.

CSS WEB OPI
Most of our recent developments for control room and

office computer user interfaces were based on the Eclipse
Rich Client Platform (RCP) [2, 3]. RCP is a powerful
Java framework that allows the implementation of
applications, which then run on different operating
systems like Microsoft Windows, Apple Mac OS X and
Linux. The RCP Standard Widget Toolkit (SWT) library
implements the actual user interface components like

windows, buttons and other graphical elements that the
end user sees on her computer screen.

Figure 3: Comparison of RCP and RAP.

The Eclipse Rich Ajax Platform (RAP) project offers

an RWT library that replaces SWT [11]. Ideally, the same
Java application code that was originally developed for
SWT will also run with RWT, but instead of creating a
display on the local computer screen, as was the case for
RCP, the RAP application is acting as a web server. Web
clients that connect to this web server will see a display in
their web browser that mimics the original SWT display.

The RAP application is typically installed in a web
container like Tomcat. The RWT library creates HTML
and Java Script code for the web client, using a Long Poll
mechanism to send updates to the web client. An
important point, however, is that the application
developer can almost completely ignore the details of
Tomcat, HTML, JavaScript, Ajax, Long Poll, because this
is handled by RAP.

The CSS operator interface BOY [12] was modified to

execute not only with RCP but also RAP. As shown in
Fig. 4, existing display files that were created with BOY
can now also be executed in a web browser, providing an
almost identical look and behavior. Users can develop any
type of BOY display and then not only use that in the
control room or their office computer but also at home
and on portable device, including smart phones.

To port the existing RCP version of BOY to RAP, code
for reading display files, connecting to EPICS network
channels and handling control system events remained the
same. This code is now executed within the web server.
Its performance is naturally identical to the same code
running in the RCP version.

Figure 4: CSS ‘BOY’ display (left) and corresponding
Web OPI representation.

THBHAUST01 Proceedings of ICALEPCS2011, Grenoble, France

1180C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Operational tools and operators’ view

 Calls into SWT, which originally updated a physical
display, now go into RWT, which in turn generates
JavaScript that is queued for delivery to the web client via
Long Polls. The JavaScript generated by RWT causes the
web client to update the display inside the web browser.

The direct display update as performed by RCP is
naturally more efficient than the RAP implementation
necessitated by the shortcomings of HTTP. On a
computer where an RCP display for 100 text widgets
updating at 10 Hz uses about 12% of the CPU and 50MB
of RAM, the combination of RAP under Tomcat with
Firefox as a web browser used about 40% CPU and
80MB of memory.

When increasing the number of text widgets to 1000,
the RCP display would continue to update at 10Hz, while
the RAP version would degrade to 3Hz.

In an operational setup, the CPU load is of course
spread across different computers. The web server can be
a high-performing server machine, while the clients can
be an office PC as well as a much simpler smart phone.
The server handles most of the logic except for the actual
display. As long as there are not too many events from the
control system that require display updates, small devices
like smart phones can display operator screens of
considerable complexity.

The RAP design aims to allow “single sourcing”. The
same source code should seamlessly compile for both
RCP and RAP. The main difference between the two is
the fact that RCP code targets a single display, while RAP
needs to handle multiple (virtual) displays. Since the
SWT programming interface associates fonts, colors and
other user interface resources with a display, the BOY
code needed to be extended to track such resources for
multiple (virtual) displays.

The network traffic between web server and client adds
a certain delay to RAP that is not present in an RCP
application, including the extreme case that the web client
can be closed without directly notifying the web server.
RAP can only detect this via time-outs.

While the BOY RCP code and the Web OPI RAP code
are currently not fully single-sourced, the majority of the
source code is shared by both approaches. Most
important, the Web OPI offers all the features of the RCP
BOY display without having to perform any coding on
the HTML or JavaScript level.

We presented the web OPI to SNS users in August
2011. Its current implementation relies on certain pre-
release snapshots of RAP code because RAP is still
maturing technology, but our initial experience has been
very good.

SUMMARY
The core web technology, HTTP, is less than ideal for

online control system displays. Appropriate use of Ajax,
especially the Long Poll paradigm, can alleviate
fundamental HTTP limitations.

The SNS Status web uses basic Ajax technology to
generate generic displays for a wide audience. The

Dashboard uses Long Poll and more client-side JavaScript
to offer more customization and faster updates for users
that need specialized displays. The Web OPI uses RAP
for web access to any BOY display, offering utmost
flexibility because users can create their own BOY
displays in CSS.

These three approaches complement each other. Users
can access generic status displays with zero effort, invest
time in creating their fully customized displays for the
Web OPI, or use the Dashboard as an intermediate
solution.

The Web OPI explores the limits of HTTP-based
control system displays. A true event mechanism that can
transfer binary data could encode the display updates
more efficiently. In the future, WebSockets [13] might be
available in all web clients, allowing for more efficient
control system displays.

REFERENCES
[1] “MEDM”, “StripTool”, “ALH” and other network

client tools for EPICS,
http://aps.anl.gov/epics/extensions

[2] K. Kasemir, “New User Interface Capabilities for
Control Systems”, PAC 2009, Vancouver, Canada

[3] K. Kasemir, “The Best Ever Alarm System Toolkit”,
ICALEPCS 2009, Kobe, Japan

[4] HTTP - Hypertext_Transfer_Protocol Overview,
http://www.w3.org/Protocols/

[5] Th. Pelaia, “CAML and Web CA Status”, EPICS
Collaboration Meeting, Legnaro, Italy, 2008

[6] Ajax (programming), August 2011,
http://en.wikipedia.org/wiki/Ajax_(programming)

[7] XMLHttpRequest Specification Candidate
Recommendation 3, August 2010,
http://www.w3.org/TR/XMLHttpRequest

[8] Comet (programming), August 2011,
http://en.wikipedia.org/wiki/Comet_(programming)

[9] Tomcat web application server,
http://tomcat.apache.org

[10] JQuery Scripting Library, August 2010,
http://jquery.com

[11] Eclipse Rich Ajax Platform, August 2010,
http://www.eclipse.org/rap

[12] X. Chen, K. Kasemir, “BOY, a Modern Graphical
Operator Interface Editor and Runtime”. PAC 2011,
New York, NY

[13] The WebSocket API, Draft 25 August 2011,
http://dev.w3.org/html5/websockets

Proceedings of ICALEPCS2011, Grenoble, France THBHAUST01

Operational tools and operators’ view 1181 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

